A merry-go-round is stationary. A clog is running around the merry-go-round on the ground just outside its circumference, moving with a constant angular speed of 0.750 rad/s. The dog does not change his pace when he sees what he has been looking for: a bone resting on the edge of the merry-go-round one- third of a revolution in front of him. At the instant the dog sees the bone ( t = 0), the merry-go-round begins to move in the direction the dog is running, with a constant angular acceleration of 0.015 0 rad/s 2 . (a) At what time will the dog first reach the bone? (b) The confused dog keeps running and passes the bone. How long after the merry-go-round starts to turn do the dog and the bone draw even with each other for the second time?
A merry-go-round is stationary. A clog is running around the merry-go-round on the ground just outside its circumference, moving with a constant angular speed of 0.750 rad/s. The dog does not change his pace when he sees what he has been looking for: a bone resting on the edge of the merry-go-round one- third of a revolution in front of him. At the instant the dog sees the bone ( t = 0), the merry-go-round begins to move in the direction the dog is running, with a constant angular acceleration of 0.015 0 rad/s 2 . (a) At what time will the dog first reach the bone? (b) The confused dog keeps running and passes the bone. How long after the merry-go-round starts to turn do the dog and the bone draw even with each other for the second time?
Solution Summary: The author explains how to determine the time when the dog will meet the bone on the merry-go-round.
A merry-go-round is stationary. A clog is running around the merry-go-round on the ground just outside its circumference, moving with a constant angular speed of 0.750 rad/s. The dog does not change his pace when he sees what he has been looking for: a bone resting on the edge of the merry-go-round one- third of a revolution in front of him. At the instant the dog sees the bone (t = 0), the merry-go-round begins to move in the direction the dog is running, with a constant angular acceleration of 0.015 0 rad/s2. (a) At what time will the dog first reach the bone? (b) The confused dog keeps running and passes the bone. How long after the merry-go-round starts to turn do the dog and the bone draw even with each other for the second time?
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Three moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression,
1900 J of work is done on the gas.
For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of
Entropy change in a free expansion.
Part A
What is the change of entropy of the gas?
ΤΕ ΑΣΦ
AS =
Submit
Request Answer
J/K
5.97 Block A, with weight
3w, slides down an inclined plane
S of slope angle 36.9° at a constant
speed while plank B, with weight
w, rests on top of A. The plank
is attached by a cord to the wall
(Fig. P5.97). (a) Draw a diagram
of all the forces acting on block
A. (b) If the coefficient of kinetic
friction is the same between A and
B and between S and A, determine
its value.
Figure P5.97
B
A
S
36.9°
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.