Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card
3rd Edition
ISBN: 9781305367388
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.91PAE

The reaction shown below is involved in the refining of iron. (The table that follows provides all of the thermodynamic data you should need for this problem.)

   2Fe 2 O 3 ( s ) + 3C ( s , graphite ) 4Fe ( s ) + 3CO 2 ( g )

(a) Find Δ H ° for the reaction.

(b) Δ S ° for the reaction above is 557.98 J/K. Find S° for Fe2O3(s).

(c) Calculate Δ G ° for the reaction at the standard temperature of 298 K. (There are two ways that you could do this.)

(d) At what temperatures would this reaction be spontaneous?

    Compound    Δ H f ° (kJ mol-1)
    (kJ mol-1)
       Δ G f ° (J mol-1 K-1)
    Fe2O3(s) -824.2 ? -742.2
    C(s, graphite) 0 5.740 0
    Fe(s) 0 27.3 0
    CO2(g) -393.5 213.6 -394.4.83

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: ΔSo for the given reaction is 557.98 J/K. Find ΔSo for Fe2O3(s).

Concept Introduction: ΔSreaction= mSproducts nSreactants

where m and n stands for the moles of products and reactants respectively

Answer to Problem 10.91PAE

Solution: ΔSo for Fe2O3(s) = 87.4 JK-1

Explanation of Solution

2 Fe2O3(s) + 3C(s)4Fe(s) + 3CO2(g)

ΔSo for reaction =557.98 JK-1, ΔSo for C(s) = 5.740 JK-1, ΔSo for Fe(s) = 27.3 JK-1, ΔSo for CO2(g) = 213.6 JK-1

ΔSreaction= mSproducts nSreactants

ΔSreaction = ( 4 x ΔS for Fe( s )  + 3 x ΔS for CO 2 ( g ))

 – ( 2 x ΔS for Fe 2 O 3 ( s )  + 3 x ΔS for C( s ))

557 .98 JK -1( 4 x 27 .3 JK -1 +3 x 213 .6 JK -1 )

 – ( 2 x ΔS for Fe 2 O 3 ( s ) + 3 x 5 .740 JK -1 )

557 .98 JK -1 = 750 JK -1( 2 x ΔS for Fe 2 O 3 ( s ) + 17 .22 JK -1 )

2 x ΔS for Fe2O3(s)  = 750 JK -1-557 .98 JK -1-17 .22 JK -1 2 x ΔS for Fe2O3(s) = 174 .8 JK -1 ΔS for Fe2O3(s) = 87 .4JK -1

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: ΔGo for the given reaction at the standard temperature of 298K

Concept Introduction: ΔGfreaction= mGfproducts nGfreactants

where m and n stands for the moles of products and reactants respectively

Answer to Problem 10.91PAE

Solution: [G] for the given reaction is 301.2 kJ mol-1

Explanation of Solution

ΔGfo for Fe2O3 = -742.2 kJ mol-1, ΔGf° for C(s)= 0, ΔGf° for Fe(s) = 0, ΔGf° for CO2(g) = -394.4 kJ mol-1

ΔGfreaction= mGfproducts nGfreactants

ΔGreaction = ( 4 x ΔG for Fe( s )  + 3 x ΔG for CO 2 ( g ))

 – ( 2 x ΔG for Fe 2 O 3 ( s )  + 3 x ΔG for C( s )) ΔGreaction

( 4 x 0 kJ mol -1 +3 x 394.4  kJ mol -1 )

 – ( 2 x 742.2  kJ mol -1 + 3 x 0 kJ mol -1 ) =

1183.2 kJ mol -1 +1484.4 kJ mol -1 = 301 .2 kJ mol -1           

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: the temperature at which this reaction be spontaneous

Concept Introduction: For the reaction to be spontaneous ΔG must be negative. Using the Gibbs free energy equation, ΔG = ΔH − TΔS, we can find the temperature at which this reaction be spontaneous.

ΔG =ΔH  TΔS 0 =ΔH  TΔST = ΔH ΔS 

Answer to Problem 10.91PAE

Solution: The temperature at which this reaction will be spontaneous is 5353.5K

Explanation of Solution

T =ΔHΔS=467.9kJmol187.4JK1=467.9x1000Jmol187.4JK1=5353.5K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT
Please correct answer and don't used hand raiting

Chapter 10 Solutions

Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card

Ch. 10 - Prob. 10.1PAECh. 10 - Prob. 10.2PAECh. 10 - Prob. 10.3PAECh. 10 - Prob. 10.4PAECh. 10 - Prob. 10.5PAECh. 10 - Use the web to learn how many pounds of plastics...Ch. 10 - On the basis of your experience, predict which of...Ch. 10 - In the thermodynamic definition of a spontaneous...Ch. 10 - 1f the combustion of butane is spontaneous, how...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Identify each of the processes listed as...Ch. 10 - Athletic trainers use instant ice packs that can...Ch. 10 - Are any of the following exothermic processes not...Ch. 10 - Enthalpy changes often help predict whether or not...Ch. 10 - When a fossil fuel burns, is that fossil fuel the...Ch. 10 - Murphy's law is a whimsical rule that says that...Ch. 10 - Prob. 10.17PAECh. 10 - Prob. 10.18PAECh. 10 - Prob. 10.19PAECh. 10 - Some games include dice with more than six sides....Ch. 10 - How does probability relate to spontaneity?Ch. 10 - Prob. 10.22PAECh. 10 - For each pair of items, tell which has the higher...Ch. 10 - Prob. 10.24PAECh. 10 - Prob. 10.25PAECh. 10 - For each process, tell whether the entropy change...Ch. 10 - Without doing a calculation, predict whether the...Ch. 10 - For the following chemical reactions, predict the...Ch. 10 - Prob. 10.29PAECh. 10 - Prob. 10.30PAECh. 10 - Prob. 10.31PAECh. 10 - Prob. 10.32PAECh. 10 - According to Lambert, leaves lying in the yard and...Ch. 10 - Prob. 10.34PAECh. 10 - What happens to the entropy of the universe during...Ch. 10 - Prob. 10.36PAECh. 10 - One statement of the second law of thermodynamics...Ch. 10 - Prob. 10.38PAECh. 10 - How does the second law of thermodynamics explain...Ch. 10 - Prob. 10.40PAECh. 10 - Prob. 10.41PAECh. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Which reaction occurs with the greater increase in...Ch. 10 - Methanol is burned as fuel in some race cars. This...Ch. 10 - Limestone is predominantly CaCO3, which can...Ch. 10 - Suppose that you find out that a system has an...Ch. 10 - Use tabulated thermodynamic data to calculate the...Ch. 10 - Prob. 10.48PAECh. 10 - Calculate S for the dissolution of magnesium...Ch. 10 - Calculate the standard entropy change for the...Ch. 10 - Through photosynthesis, plants build molecules of...Ch. 10 - Find websites describing two different attempts to...Ch. 10 - Prob. 10.53PAECh. 10 - Prob. 10.54PAECh. 10 - A beaker of water at 400 C(on the left in the...Ch. 10 - Describe why it is easier to use Gto determine the...Ch. 10 - Under what conditions does G allow us to predict...Ch. 10 - There is another free energy state function, the...Ch. 10 - 10.45 Calculate G at 45°C for reactions for which...Ch. 10 - 10.46 Discuss the effect of temperature change on...Ch. 10 - The reaction CO2(g)+H2(g)CO(g)+H2O(g) is not...Ch. 10 - Prob. 10.62PAECh. 10 - Prob. 10.63PAECh. 10 - For the reaction NO(g)+NO2(g)N2O3(g) , use...Ch. 10 - 10.51 The combustion of acetylene was used in...Ch. 10 - Natural gas (methane) is being used in...Ch. 10 - Silicon forms a series of compounds analogous to...Ch. 10 - Explain why Gf of O2 (g) is zero.Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Using tabulated thermodynamic data, calculate G...Ch. 10 - Calculate G for the dissolution of both sodium...Ch. 10 - Phosphorus exists in multiple solid phases,...Ch. 10 - 10.59 The normal melting point of benzene, C6H6,...Ch. 10 - Prob. 10.74PAECh. 10 - Estimate the temperature range over which each of...Ch. 10 - Recall that incomplete combustion of fossil fuels...Ch. 10 - During polymerization, the system usually becomes...Ch. 10 - Prob. 10.78PAECh. 10 - Prob. 10.79PAECh. 10 - The recycling of polymers represents only one...Ch. 10 - Diethyl ether is a liquid at normal temperature...Ch. 10 - Calculate the entropy change, S , for the...Ch. 10 - Gallium metal has a melting point of 29.8°C. Use...Ch. 10 - Methane can be produced from CO and H2.The process...Ch. 10 - 10.85 Iodine is not very soluble in water, but it...Ch. 10 - The enthalpy of vaporization for water is 40.65 kJ...Ch. 10 - Determine whether each of the following statements...Ch. 10 - Nickel metal reacts with carbon monoxide to form...Ch. 10 - Polyethylene has a heat capacity of 2,3027 J g-1...Ch. 10 - A key component in many chemical engineering...Ch. 10 - The reaction shown below is involved in the...Ch. 10 - Using only the data given below, determine G for...Ch. 10 - The graph below shows G as a function of...Ch. 10 - Prob. 10.94PAECh. 10 - Prob. 10.95PAECh. 10 - Prob. 10.96PAECh. 10 - Prob. 10.97PAECh. 10 - Prob. 10.98PAECh. 10 - Thermodynamics provides a way to interpret...Ch. 10 - Prob. 10.100PAECh. 10 - 10.101 Fluorine reacts with liquid water to form...Ch. 10 - 10.102 Ammonia can react with oxygen gas to form...Ch. 10 - Prob. 10.103PAECh. 10 - 10.104 (a) When a chemical bond forms, what...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY