Concept explainers
Interpretation: The amount of reagents required and range of osmotic pressure has to be calculated.
Concept Introduction: The mass of the compound is calculated by taking the products of molar mass of the compound to the given mass. The mass of compound can be given by,
Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.
The osmotic pressure can be given by the equation,
Answer to Problem 108AE
The range of osmotic pressure is
Explanation of Solution
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the mass of individual elements
Molar mass of Sodium lactate =
Molar mass of Lactate =
Molar mass of
Molecular mass of Calcium =
Molar mass of
Molecular weight of Potassium =
Molar mass of
Molecular mass of Sodium=
The average values for each ion are,
The source of Lactate is
Mass of Lactate =
The source of
Mass of
The source of
Mass of
Mass of
Additional amount of Sodium
Mass of Sodium added =
Mass of
Total
Therefore,
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the minimum and maximum concentrations of ions
Molar mass of Lactate =
Molecular mass of Calcium =
Molecular weight of Potassium =
Molecular mass of Sodium=
At minimum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration =
=
At maximum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration=
=
The total concentration of ions for minimum and maximum concentration is calculated by using the summing the molarities of individual ions. The molarities of individual ions are calculated using the minimum and maximum moles to their molecular masses. The total concentrations at minimum and maximum concentrations are
To calculate the osmotic pressure at minimum and maximum concentration
At minimum concentration,
At maximum concentration,
At minimum concentration, osmotic pressure=
At maximum concentration, osmotic pressure=
The mass of individual elements was calculated using their respective molar mass and molecular weight and the given weight. A typical analytical balance can nearly measure to
The osmotic pressure at minimum and maximum concentrations was calculated using the molarities at minimum and maximum concentration. The osmotic pressure at minimum and maximum concentrations were
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- What is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forwardLast Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forward
- this is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward2B: The retrosynthetic cut below provides two options for a Suzuki coupling, provide the identities of A, B, C and D then identify which pairing is better and justify your choice. O₂N. Retro-Suzuki NO2 MeO OMe A + B OR C + Darrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning