Concept explainers
Interpretation: The amount of reagents required and range of osmotic pressure has to be calculated.
Concept Introduction: The mass of the compound is calculated by taking the products of molar mass of the compound to the given mass. The mass of compound can be given by,
Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.
The osmotic pressure can be given by the equation,

Answer to Problem 108AE
The range of osmotic pressure is
Explanation of Solution
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the mass of individual elements
Molar mass of Sodium lactate =
Molar mass of Lactate =
Molar mass of
Molecular mass of Calcium =
Molar mass of
Molecular weight of Potassium =
Molar mass of
Molecular mass of Sodium=
The average values for each ion are,
The source of Lactate is
Mass of Lactate =
The source of
Mass of
The source of
Mass of
Mass of
Additional amount of Sodium
Mass of Sodium added =
Mass of
Total
Therefore,
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the minimum and maximum concentrations of ions
Molar mass of Lactate =
Molecular mass of Calcium =
Molecular weight of Potassium =
Molecular mass of Sodium=
At minimum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration =
=
At maximum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration=
=
The total concentration of ions for minimum and maximum concentration is calculated by using the summing the molarities of individual ions. The molarities of individual ions are calculated using the minimum and maximum moles to their molecular masses. The total concentrations at minimum and maximum concentrations are
To calculate the osmotic pressure at minimum and maximum concentration
At minimum concentration,
At maximum concentration,
At minimum concentration, osmotic pressure=
At maximum concentration, osmotic pressure=
The mass of individual elements was calculated using their respective molar mass and molecular weight and the given weight. A typical analytical balance can nearly measure to
The osmotic pressure at minimum and maximum concentrations was calculated using the molarities at minimum and maximum concentration. The osmotic pressure at minimum and maximum concentrations were
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
- Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





