
Methane can be produced from CO and H2.The process might be done in two steps, as shown below, with each step carried out in a separate reaction vessel within the production plant.
Reaction 1
Reaction 2
NOTE: You should be able to work this problem without using any additional tabulated data.
(a) Calculate
(b) Calculate
(c) Calculate S° for O2(g).
(d) At what temperatures is reaction 1 spontaneous?
(e) Suggest a reason why these two steps would need to be carried out separately.
Substance |
|
|
|
CO(s) | -110.5 | 197.674 | |
CH3OH( ) |
-238.7 | -166.4 | 126.8 |
CH4(g) | -74.8 | 186.2 |

Interpretation:
Thermodynamic entropy, enthalpy and Gibb’s free energy as asked must be calculated for the reactions given.
Concept Introduction:
Enthalpy change for a process is determined as:
where v is for stoichiometric coefficients
Similarly entropy change for a process is determined as:
where v is for stoichiometric coefficients and
Gibb’s free energy is a state function which predicts whether a process is spontaneous or not at conditions of constant pressure and temperature. Gibb’s free energy change for a process at constant temperature is defined as:
where
Similar to enthalpy and entropy, standard Gibb’s free energy change can be calculated as:
Also
Answer to Problem 10.84PAE
Solution:
a)
b)
c)
d) Hence reaction 1 is spontaneous at lower temperatures.
e) Since reaction 1 is spontaneous at lower temperatures and reaction 2 is spontaneous at higher temperatures, they must be carried out separately.
a)
Explanation of Solution
Given reaction 1 is:
Calculate enthalpy change the above reaction that is
b)
Using the value of enthalpy change of reaction 1 calculated in part a) and the given entropy change calculate the Gibb’s free energy change for reaction 1. Since we are using standard values the temperature will be 298 K.
Now use the formula described above in the concept introduction to calculate
c)
Given reaction 2 is:
The entropy change for the above reaction is
d)
Gibb’s free energy is a state function which predicts whether a process is spontaneous or not at conditions of constant pressure and temperature. Gibb’s free energy change for a process at constant temperature is defined as:
Where
Given reaction 1 is:
The entropy change for the above reaction is
Hence reaction 1 is spontaneous at lower temperatures.
e)
As explained above in part c) reaction 1 is spontaneous at lower temperatures. Similarly given reaction 2 is:
The entropy change for the above reaction is
. Calculate enthalpy change for this reaction:
Gibb’s free energy is a state function which predicts whether a process is spontaneous or not at conditions of constant pressure and temperature. Gibb’s free energy change for a process at constant temperature is defined as:
Where
Now since both
Since reaction 1 is spontaneous at lower temperatures and reaction 2 is spontaneous at higher temperatures, they must be carried out separately.
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry for Engineering Students
- Nonearrow_forwardConsider the structure of 1-bromo-2-fluoroethane. Part 1 of 2 Draw the Newman projection for the anti conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. ✡ ぬ Part 2 of 2 H H F Br H H ☑ Draw the Newman projection for the gauche conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. H F Br H Harrow_forwardPlease help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before. Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.arrow_forward
- Which of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forwardBased on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forward
- Add conditions above and below the arrow that turn the reactant below into the product below in a single transformation. + More... If you need to write reagents above and below the arrow that have complex hydrocarbon groups in them, there is a set of standard abbreviations you can use. More... T H,N NC Datarrow_forwardIndicate the order of basicity of primary, secondary and tertiary amines.arrow_forward> Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. Cl Z- N O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic ○ antiaromatic nonaromaticarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,





