Concept explainers
For the reaction
(a) Predict the enthalpy of reaction from the average bond enthalpies in Table 10.4. (b) Calculate the enthalpy of reaction from the standard enthalpies of formation (see Appendix 2) of the reactant and product molecules, and compare the result with your answer for part (a).
(a)
Interpretation:
The standard enthalpy of formation and bond enthalpies has to be used to calculate the enthalpy of the reaction.
Concept Introduction:
Bond Enthalpy:
The measure of stability of molecule is bond enthalpy. The change in enthalpy is related in breaking a specific bond of 1 mole of gaseous molecule. In solids and liquids bond enthalpies are affected by neighboring molecules. There is possibility to predict the enthalpy of reaction using the average bond enthalpies. Energy is always needed for the breaking of chemical bonds and release of energy always takes place with the formation of chemical bonds. The enthalpy of reaction is estimated by counting the total number of broken bonds and bonds formed in a reaction.
The enthalpy of reaction in gas phase is given by,
Where,
BE= Bond enthalpy and
To calculate: The enthalpy of the reaction from the bond enthalpy
Answer to Problem 10.77QP
The enthalpy of the reaction from the average bond enthalpy is found to be
Explanation of Solution
Bonds Broken | No of broken bonds |
Bond enthalpy ( |
Enthalpy change ( |
|
|
| 4968 |
|
|
|
|
|
|
|
|
Bonds Formed | No of formed bonds |
Bond enthalpy ( |
Enthalpy change ( |
|
|
|
|
|
|
|
|
=
=
The enthalpy of the reaction from the bond enthalpy =
(b)
Interpretation:
The standard enthalpy of formation and bond enthalpies has to be used to calculate the enthalpy of the reaction.
Concept Introduction:
Standard enthalpy of formation:
The change in enthalpy that is associated with the formation of one mole of a substance from its related elements being in standard state is called standard enthalpy of formation (
The standard enthalpy of reaction is the enthalpy of reaction that takes place under standard conditions.
The equation for determining the standard enthalpies of compound and element can be given by,
To calculate: the enthalpy of the reaction from standard enthalpy of formation
Answer to Problem 10.77QP
The enthalpy of the reaction from the standard enthalpy of formation =
Explanation of Solution
Standard enthalpy of
Standard enthalpy of
Standard enthalpy of
Standard enthalpy of
The enthalpy of the reaction from the standard enthalpy of formation =
The enthalpy of the reaction from the standard enthalpy of formation is calculated by plugging in the standard enthalpies of formation of reactants and products. The enthalpy of the reaction from the standard enthalpy of formation is found to be
To compare the enthalpy of the reaction
The enthalpy of the reaction is different because in one case average bond enthalpy was used and in other case standard enthalpy of formation was used.
The enthalpy of the reaction from the standard enthalpy of formation =
The enthalpy of the reaction from the bond enthalpy=
The enthalpy of the reaction is different because in one case average bond enthalpy was used and in other case standard enthalpy of formation was used.
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: Atoms First
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning