Microelectronic Circuits (the Oxford Series In Electrical And Computer Engineering)
8th Edition
ISBN: 9780190853464
Author: Adel S. Sedra, Kenneth C. (kc) Smith, Tony Chan Carusone, Vincent Gaudet
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.55P
To determine
Transfer function
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Phase (deg)
3. The Bode diagram of a system is shown below.
Magnitude (dB)
System: sys
-10
Frequency (rad/s): 0.141
Magnitude (dB): -15.6
-20
-30
40
-50
-60
0
-45
-90
-135
101
10°
Bode Diagram
System: sys
Frequency (radis): 10
Magnitude (dB): -18.9
System: sys
Frequency (rad/s): 10
Phase (deg):-52.2
101
Frequency (rad/s)
102
103
Find the steady-state output of the system for each of the following inputs.
a) u(t) = 100
b) u(t) 100 cos(10 t + 10°)
=
c) u(t) = 500 + 200 cos(10 t + 10°)
Phase (deg)
270
4. Consider a closed-loop system with unity (negative) feedback. The Bode diagram of
the open-loop transfer function is given below.
Magnitude (dB)
-500
-150
-50
10 dB
System
Frequency (eds): 6.63
Magnitude (B) 0.0778
Буку
Frequency(): 10.1
Magnitude ()-705
Frequency(6.63
Phase (deg): -144
Frequency (rad): 10.1
Phase (deg): -180
101
Frequency (rad)
a) Find the gain margin, phase margin, gain crossover frequency, and phase crossover
frequency.
b) Is the closed-loop system stable? What is the steady-state error for step-input?
electric plants
Chapter 10 Solutions
Microelectronic Circuits (the Oxford Series In Electrical And Computer Engineering)
Ch. 10.1 - Prob. 10.1ECh. 10.1 - Prob. 10.2ECh. 10.2 - Prob. 10.6ECh. 10.2 - Prob. 10.7ECh. 10.2 - Prob. 10.8ECh. 10.2 - Prob. 10.9ECh. 10.3 - Prob. 10.11ECh. 10.3 - Prob. 10.12ECh. 10.3 - Prob. 10.13ECh. 10.3 - Prob. 10.14E
Ch. 10.4 - Prob. 10.15ECh. 10.4 - Prob. 10.16ECh. 10.8 - Prob. 10.26ECh. 10.8 - Prob. 10.27ECh. 10 - Prob. 10.1PCh. 10 - Prob. 10.2PCh. 10 - Prob. 10.3PCh. 10 - Prob. 10.4PCh. 10 - Prob. 10.6PCh. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Prob. 10.9PCh. 10 - Prob. 10.10PCh. 10 - Prob. D10.11PCh. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.14PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Prob. 10.18PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.23PCh. 10 - Prob. 10.24PCh. 10 - Prob. D10.25PCh. 10 - Prob. 10.26PCh. 10 - Prob. 10.28PCh. 10 - Prob. 10.30PCh. 10 - Prob. 10.31PCh. 10 - Prob. 10.32PCh. 10 - Prob. 10.38PCh. 10 - Prob. 10.40PCh. 10 - Prob. 10.41PCh. 10 - Prob. D10.45PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.54PCh. 10 - Prob. 10.55PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.65PCh. 10 - Prob. 10.69PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.72PCh. 10 - Prob. 10.73PCh. 10 - Prob. D10.83PCh. 10 - Prob. 10.86PCh. 10 - Prob. 10.89PCh. 10 - Prob. 10.90PCh. 10 - Prob. 10.92PCh. 10 - Prob. D10.93PCh. 10 - Prob. D10.94PCh. 10 - Prob. D10.95PCh. 10 - Prob. 10.96PCh. 10 - Prob. D10.97PCh. 10 - Prob. D10.98PCh. 10 - Prob. D10.99PCh. 10 - Prob. 10.100PCh. 10 - Prob. D10.101PCh. 10 - Prob. 10.102PCh. 10 - Prob. D10.103PCh. 10 - Prob. 10.104P
Knowledge Booster
Similar questions
- z+4 What is the value of cz²+2z+5 a) If C is the circle |z|=1. dz b) If C is the circle |z+1-i|=2. c) If C is the circle |z+1+i|=2.arrow_forwardz+4 What is the value of √cz²+2z+5 dz Sc a) If C is the circle |z|=1. c) If C is the circle |z+1+i|=2. b) If C is the circle |z+1-i|=2.arrow_forwardz+1 What is the value of Sc 73. C -2z² 3-zzz dz i) ii) iii) If C is the circle |z|=1. If C is the circle |z-2-i|=2. If C is the circle |z-1-2i|=2.arrow_forward
- 1. The communication channel bandwidth uses is 25 MHz centered at 1GHz and uses BPSK. The noise power spectral density of the channel is 10^-9 W/Hz. The channel loss between the transmitter and receiver is 25dB. The application requires a BER of less than 10^-4. Determine the minimum transmit power required.arrow_forward4. A differential BPSK transmitter consumes 10 W and provides a BER of 1*10^-7. If the system moves to 16-QAM, what is new minimum transmit power?arrow_forward5. The noise power (in watts) measured in a 40MHz Wifi channel is 230*10^-6 Watts. The access point (AP) output power is 600 mW and only uses 256QAM and has a data rate of 400Mbps. The channel losses can be modeled as 0.4dB/meter. An application on your phone requires a BER of < than 1*10^-4. A) What is the maximum distance between the AP and your phone? b) if the AP and my phone could switch to 64QAM and support the same data rate, what is the new maximum distance between the AP and my phone?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,