![EBK GENERAL, ORGANIC, & BIOLOGICAL CHEM](https://www.bartleby.com/isbn_cover_images/9781259298424/9781259298424_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
A balanced
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of
A radioactive process in which nucleus of an atom emits a beta particle (
![Check Mark](/static/check-mark.png)
Answer to Problem 10.42P
The complete nuclear reaction for decay of sulfur-35 through β emission is represented as follows:
Explanation of Solution
To write a balanced
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is having -1 charge thus atomic number of new nucleus will be obtained by adding 1 to the atomic number of original nucleus
The element having atomic number 17 is Chlorine.
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
(b)
Interpretation:
A balanced nuclear equation for decay of thorium-225 through a emission should be predicted.
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of atomic number and mass number on both the side should be equal.
A radioactive process in which nucleus of an atom emits a (
![Check Mark](/static/check-mark.png)
Answer to Problem 10.42P
The complete nuclear reaction for decay of thorium-225 through a emission is represented as follows:
Explanation of Solution
To write a balanced chemical reaction following steps should be followed which are given as follows:
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is having 2 protons thus atomic number of new nucleus will be obtained by subtracting 2 from atomic number of original nucleus
Mass number: The sum of mass number on both side must be equal in a nuclear equation. Since, the particle emitted during decay of thorium is having mass number 4. Thus, mass number of new nuclei will be obtained by subtracting 4 from atomic number of thorium as
The element having atomic number 88 is radium.
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
(c)
Interpretation:
A balanced nuclear equation for decay of rhodium-93 through positron emission should be predicted.
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of atomic number and mass number on both the side should be equal.
A radioactive process in which nucleus of an atom emits a positron
![Check Mark](/static/check-mark.png)
Answer to Problem 10.42P
The complete nuclear reaction for decay of rhodium by positron emission is represented as follows:
Explanation of Solution
To write a balanced chemical reaction following steps should be followed which are given as follows:
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is
The element having atomic number 44 is Ruthenium (Ru).
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
(d)
Interpretation:
A balanced nuclear equation for decay of silver-114 through β emission should be predicted.
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of atomic number and mass number on both the side should be equal.
A radioactive process in which nucleus of an atom emits a beta particle
![Check Mark](/static/check-mark.png)
Answer to Problem 10.42P
The complete nuclear reaction for decay of silver-114 through β emission is represented as follows:
Explanation of Solution
To write a balanced chemical reaction following steps should be followed which are given as follows:
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is having -1 charge thus atomic number of new nucleus will be obtained by adding 1 to the atomic number of original nucleus
The element having atomic number 48 is cadmium (Cd).
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
Want to see more full solutions like this?
Chapter 10 Solutions
EBK GENERAL, ORGANIC, & BIOLOGICAL CHEM
- Use the average molarity of acetic acid (0.0867M) to calculate the concentration in % (m/v). Then calculate the % difference between the calculated concentrations of your unknown vinegar solution with the 5.00% (w/v%) vinegar solution (check the formula for % difference in the previous lab or online). Before calculating the difference with vinegar, remember that this %(m/v) is of the diluted solution. It has been diluted 10 times.arrow_forwardWhat deprotonates or what can be formed? Please help me understand the problem.arrow_forwardShow work with explanation. Don't give Ai generated solutionarrow_forward
- I have a question about this problem involving mechanisms and drawing curved arrows for acids and bases. I know we need to identify the nucleophile and electrophile, but are there different types of reactions? For instance, what about Grignard reagents and other types that I might not be familiar with? Can you help me with this? I want to identify the names of the mechanisms for problems 1-14, such as Gilman reagents and others. Are they all the same? Also, could you rewrite it so I can better understand? The handwriting is pretty cluttered. Additionally, I need to label the nucleophile and electrophile, but my main concern is whether those reactions differ, like the "Brønsted-Lowry acid-base mechanism, Lewis acid-base mechanism, acid-catalyzed mechanisms, acid-catalyzed reactions, base-catalyzed reactions, nucleophilic substitution mechanisms (SN1 and SN2), elimination reactions (E1 and E2), organometallic mechanisms, and so forth."arrow_forwardSolve the spectroarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forward2. 200 LOD For an unknown compound with a molecular ion of 101 m/z: a. Use the molecular ion to propose at least two molecular formulas. (show your work) b. What is the DU for each of your possible formulas? (show your work) C. Solve the structure and assign each of the following spectra. 8 6 4 2 (ppm) 150 100 50 ō (ppm) 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardComplete the spectroscopy with structurearrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)