A typical automobile has a weight of approximately 3500 lb. If the vehicle is to be equipped with tires, each of which will contact the pavement with a “footprint” that is 6.0 in. wide by 3.2 in. long, what must the gauge pressure of the air be in each tire? (Gauge pressure is the amount that the gas pressure exceeds atmospheric pressure. Assume that atmospheric pressure is 14 .7 lb in . -2 . )
A typical automobile has a weight of approximately 3500 lb. If the vehicle is to be equipped with tires, each of which will contact the pavement with a “footprint” that is 6.0 in. wide by 3.2 in. long, what must the gauge pressure of the air be in each tire? (Gauge pressure is the amount that the gas pressure exceeds atmospheric pressure. Assume that atmospheric pressure is 14 .7 lb in . -2 . )
A typical automobile has a weight of approximately 3500 lb. If the vehicle is to be equipped with tires, each of which will contact the pavement with a “footprint” that is 6.0 in. wide by 3.2 in. long, what must the gauge pressure of the air be in each tire? (Gauge pressure is the amount that the gas pressure exceeds atmospheric pressure. Assume that atmospheric pressure is
14
.7 lb in
.
-2
.
)
3. Consider the compounds below and determine if they are aromatic, antiaromatic, or
non-aromatic. In case of aromatic or anti-aromatic, please indicate number of I
electrons in the respective systems. (Hint: 1. Not all lone pair electrons were explicitly
drawn and you should be able to tell that the bonding electrons and lone pair electrons
should reside in which hybridized atomic orbital 2. You should consider ring strain-
flexibility and steric repulsion that facilitates adoption of aromaticity or avoidance of anti-
aromaticity)
H H
N
N:
NH2
N
Aromaticity
(Circle)
Aromatic Aromatic Aromatic Aromatic Aromatic
Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic
nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic
aromatic TT
electrons
Me
H
Me
Aromaticity
(Circle)
Aromatic Aromatic Aromatic
Aromatic Aromatic
Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic
nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic
aromatic πT
electrons
H
HH…
A chemistry graduate student is studying the rate of this reaction:
2 HI (g) →H2(g) +12(g)
She fills a reaction vessel with HI and measures its concentration as the reaction proceeds:
time
(minutes)
[IH]
0
0.800M
1.0
0.301 M
2.0
0.185 M
3.0
0.134M
4.0
0.105 M
Use this data to answer the following questions.
Write the rate law for this reaction.
rate
= 0
Calculate the value of the rate constant k.
k =
Round your answer to 2 significant digits. Also be
sure your answer has the correct unit symbol.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY