University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.28E
A size-5 soccer ball of diameter 22.6 cm and mass 426 g rolls up a hill without slipping, reaching a maximum height of 5.00 m above the base of the hill. We can model this ball as a thin-walled hollow sphere. (a) At what rate was it rotating at the base of the hill? (b) How much rotational kinetic energy did it have then?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
University Physics (14th Edition)
Ch. 10 - Can a single force applied to a body change both...Ch. 10 - Suppose you could use wheels of any type in the...Ch. 10 - Serious bicyclists say that if you reduce the...Ch. 10 - The harder you hit the brakes while driving...Ch. 10 - When an acrobat walks on a tightrope, she extends...Ch. 10 - When you turn on an electric motor, it takes...Ch. 10 - The work done by a force is the product of force...Ch. 10 - A valued client brings a treasured ball to your...Ch. 10 - You make two versions of the same object out of...Ch. 10 - Two identical masses are attached to frictionless...
Ch. 10 - The force of gravity acts on the baton in Fig....Ch. 10 - A certain solid uniform bail reaches a maximum...Ch. 10 - A wheel is rolling without slipping on a...Ch. 10 - A hoop, a uniform solid cylinder, a spherical...Ch. 10 - A ball is rolling along al speed without slipping...Ch. 10 - You are standing at the center of a large...Ch. 10 - Global Warming. If the earths climate continues to...Ch. 10 - It two spinning objects have the same angular...Ch. 10 - A student is sitting on a frictionless rotating...Ch. 10 - A point particle travels in a straight line at...Ch. 10 - In Example 10.10 (Section 10.6) the angular speed ...Ch. 10 - In Example 10.10 (Section 10.6) the rotational...Ch. 10 - As discussed in Section 10.6, the angular momentum...Ch. 10 - If you stop a spinning raw egg for the shortest...Ch. 10 - A helicopter has a large main rotor that rotates...Ch. 10 - In a common design for a gyroscope, the flywheel...Ch. 10 - A gyroscope is precessing about a vertical axis....Ch. 10 - A gyroscope takes 3.8 s to precess 1.0 revolution...Ch. 10 - A gyroscope is precessing as in Fig. 10.32. What...Ch. 10 - A bullet spins on its axis as it emerges from a...Ch. 10 - Calculate the torque (magnitude and direction)...Ch. 10 - Calculate the net torque about point O for the two...Ch. 10 - A square metal plate 0.180m on each side is...Ch. 10 - Three forces are applied to a wheel of radius...Ch. 10 - One force acting on a machine part is...Ch. 10 - A metal bar is in the xy-plane with one end of the...Ch. 10 - A machinist is using a wrench lo loosen a nut. The...Ch. 10 - A uniform disk with mass 40.0 kg and radius 0.200...Ch. 10 - The flywheel of an engine has moment of inertia...Ch. 10 - A cord is wrapped around ihe rim of a solid...Ch. 10 - A machine part has the shape of u solid uniform...Ch. 10 - CP A stone is suspended from the free end of a...Ch. 10 - Prob. 10.13ECh. 10 - CP A 15.0-kg bucket of water is suspended by a...Ch. 10 - A wheel rotates without friction about a...Ch. 10 - A 12.0-kg box resting on a horizontal,...Ch. 10 - A 2.20-kg hoop 1.20 m in diameter is rolling to...Ch. 10 - BIO Gymnastics. We can roughly model a gymnastic...Ch. 10 - What fraction of the total kinetic energy is...Ch. 10 - A siring is wrapped several times around the rim...Ch. 10 - A solid ball is released from rest and slides down...Ch. 10 - A hollow, spherical shell with mass 2.00 kg rolls...Ch. 10 - A 392-N wheel comes off a moving truck and rolls...Ch. 10 - A uniform marble rolls down a symmetrical bowl,...Ch. 10 - A thin, light string is wrapped around the outer...Ch. 10 - A Ball Rolling Uphill. A bowling ball rolls...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A playground merry-go-round has radius 2.40 m and...Ch. 10 - An engine delivers 175 hp to an aircraft propeller...Ch. 10 - A 2.80-kg grinding wheel is in the form of a solid...Ch. 10 - An electric motor consumes 9.00 kJ of electrical...Ch. 10 - (a) Compute the torque developed by an industrial...Ch. 10 - An airplane propeller is 2.08 m in length (from...Ch. 10 - A 2.00-kg rock has a horizontal velocity of...Ch. 10 - A woman with mass 50 kg is standing on the rim of...Ch. 10 - Find the magnitude of the angular momentum of the...Ch. 10 - (a) Calculate the magnitude of the angular...Ch. 10 - CALC A hollow, thin-walled sphere of mass 12.0 kg...Ch. 10 - CP A small block on a frictionless, horizontal...Ch. 10 - Prob. 10.41ECh. 10 - A diver comes off a board with arms straight up...Ch. 10 - The Spinning Figure Skater. The outstretched hands...Ch. 10 - A solid wood door 1.00 m wide and 2.00 m high is...Ch. 10 - A large wooden turntable in the shape of a flat...Ch. 10 - Asteroid Collision! Suppose that an asteroid...Ch. 10 - Prob. 10.47ECh. 10 - A thin uniform rod has a length of 0.500 m and is...Ch. 10 - A thin, uniform metal bar. 2.00 m long and...Ch. 10 - A uniform. 4.5-kg, square, solid wooden gate 1.5 m...Ch. 10 - The rotor (flywheel) of a loy gyroscope has mass...Ch. 10 - A Gyroscope on the Moon. A certain gyroscope...Ch. 10 - Stabilization of the Hubble Space Telescope. The...Ch. 10 - A 50.0-kg grindstone is a solid disk 0.520 m in...Ch. 10 - 10.55A grindstone in the shape of a solid disk...Ch. 10 - A thin, uniform. 3.80-kg bar, 80.0 cm long, has...Ch. 10 - You are designing a simple elevator system for an...Ch. 10 - The Atwoods Machine. Figure P10.59 illustrates an...Ch. 10 - The mechanism shown in Fig. P10.60 is used to...Ch. 10 - A large 16.0-kg roll of paper with radius R = 18.0...Ch. 10 - A block with mass m = 5.00 kg slides down a...Ch. 10 - Two metal disks, one with radius R1 = 2.50 cm and...Ch. 10 - A lawn roller in the form of a thin-walled, hollow...Ch. 10 - Two weights are connected by a very light,...Ch. 10 - You complain about fire safety to the landlord of...Ch. 10 - The Yo-yo. A yo-yo is made from two uniform disks,...Ch. 10 - CP A thin-walled, hollow spherical shell of mass m...Ch. 10 - A basketball (which can be closely modeled as a...Ch. 10 - CP A solid uniform ball rolls without slipping up...Ch. 10 - Rolling Stones. A solid, uniform, spherical...Ch. 10 - You are designing a system for moving aluminum...Ch. 10 - A 42.0-cm-diameter wheel, consisting of a rim and...Ch. 10 - A uniform, 0.0300-kg rod of length 0.400 in...Ch. 10 - A uniform solid cylinder with mass M and radius 2R...Ch. 10 - Tarzan and Jane in the 21st Century. Tarzan has...Ch. 10 - A 5.00-kg ball is dropped from a height of 12.0 m...Ch. 10 - The solid wood door of a gymnasium is 1.00 m wide...Ch. 10 - A uniform rod of length L rests on a friction less...Ch. 10 - CP A large turntable with radius 6.00 m rotates...Ch. 10 - In your job as a mechanical engineer you are...Ch. 10 - A local ice hockey team has asked you to design an...Ch. 10 - You are designing a slide for a water park. In a...Ch. 10 - Neutron Star Glitches. Occasionally, a rotating...Ch. 10 - A 500.0-g bird is flying horizontally at 2.25 m/s,...Ch. 10 - CP A small block with mass 0.130 kg is attached to...Ch. 10 - A 55-kg runner runs around the edge of a...Ch. 10 - DATA The V6 engine in a 2014 Chevrolet Silverado...Ch. 10 - DATA You have one object of each of these shapes,...Ch. 10 - DATA You are testing a small flywheel (radius...Ch. 10 - Prob. 10.91CPCh. 10 - When an object is rolling without slipping, the...Ch. 10 - A demonstration gyroscope wheel is constructed by...Ch. 10 - The moment of inertia of the empty turntable is...Ch. 10 - While the turntable is being accelerated, the...Ch. 10 - A doubling of the torque produces a greater...Ch. 10 - If the bodys center of mass were not placed on the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
During a hailstorm, hailstones with an average mass of 2 g and a speed of 15 m/s strike a window pane at 45 ang...
An Introduction to Thermal Physics
Choose the best answer to each of the following. Explain your reasoning. Which of these galaxies is likely to b...
Cosmic Perspective Fundamentals
26.82 DATA The electronics supply company where you work has two different resistors, R1 and R2, in its invento...
University Physics with Modern Physics (14th Edition)
A solid 2.4-kg sphere is rolling at 5.0 m/s. Find (a) its translational kinetic energy and (b) its rotational k...
Essential University Physics: Volume 1 (3rd Edition)
For the circuit shown in Fig. 30–38, show that if the condition is satisfied then the potential difference bet...
Physics for Scientists and Engineers with Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 12.0-kg solid sphere of radius 1.50 m is being rotated by applying a constant tangential force of 10.0 N at a perpendicular distance of 1.50 m from the rotation axis through the center of the sphere. If the sphere is initially at rest, how many revolutions must the sphere go through while this force is applied before it reaches an angular speed of 30.0 rad/s?arrow_forwardA turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardCalculate the rotational kinetic energy of a 12-kg motorcycle wheel if its angular velocity is 120 rad/s and its inner radius is 0.280 m and outer radius 0.330 m.arrow_forward
- A disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardA space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forward
- A disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardRigid rods of negligible mass lying along the y axis connect three particles (Fig. P10.18). The system rotates about the x axis with an angular speed of 2.00 rad/s. Find (a) the moment of inertia about the x axis, (b) the total rotational kinetic energy evaluated from 12I2, (c) the tangential speed of each particle, and (d) the total kinetic energy evaluated from 12mivi2. (e) Compare the answers for kinetic energy in parts (b) and (d). Figure P10.18arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forward
- A solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardBig Ben, the Parliament tower clock in London, has an hour hand 2.70 m long with a mass of 60.0 kg and a minute hand 4.50 m long with a mass of 100 kg (Fig. P10.17). Calculate the total rotational kinetic energy of the two hands about the axis of rotation. (You may model the hands as long, thin rods rotated about one end. Assume the hour and minute hands are rotating at a constant rate of one revolution per 12 hours and 60 minutes, respectively.) Figure P10.17 Problems 17, 49, and 66.arrow_forwardThe precession angular velocity of a gyroscope is 1.0 rad/s. If the mass of the rotating disk is 0.4 kg and its radius is 30 cm, as well as the distance from the center of mass to the pivot, what is the rotation rate in rev/s of the disk?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY