Review. A small object with mass 4.00 kg moves counterclockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector 3.00 i ^ m . It then undergoes an angular displacement of 9.00 rad. (a) What is its new position vector? Use unit-vector notation for all vector answers. (b) In what quadrant is the particle located, and what angle does its position vector make with the positive x axis? (c) What is its velocity? (d) In what direction is it moving? (e) What is its acceleration? (f) Make a sketch of its position, velocity, and acceleration vectors. (g) What total force is exerted on the object?
Review. A small object with mass 4.00 kg moves counterclockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector 3.00 i ^ m . It then undergoes an angular displacement of 9.00 rad. (a) What is its new position vector? Use unit-vector notation for all vector answers. (b) In what quadrant is the particle located, and what angle does its position vector make with the positive x axis? (c) What is its velocity? (d) In what direction is it moving? (e) What is its acceleration? (f) Make a sketch of its position, velocity, and acceleration vectors. (g) What total force is exerted on the object?
Review. A small object with mass 4.00 kg moves counterclockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector
3.00
i
^
m
. It then undergoes an angular displacement of 9.00 rad. (a) What is its new position vector? Use unit-vector notation for all vector answers. (b) In what quadrant is the particle located, and what angle does its position vector make with the positive x axis? (c) What is its velocity? (d) In what direction is it moving? (e) What is its acceleration? (f) Make a sketch of its position, velocity, and acceleration vectors. (g) What total force is exerted on the object?
Definition Definition Angle at which a point rotates around a specific axis or center in a given direction. Angular displacement is a vector quantity and has both magnitude and direction. The angle built by an object from its rest point to endpoint created by rotational motion is known as angular displacement. Angular displacement is denoted by θ, and the S.I. unit of angular displacement is radian or rad.
(a)
Expert Solution
To determine
The new position vector of the object.
Answer to Problem 10.26P
The new position vector of the object is (−2.7i^+1.23j^)m.
Explanation of Solution
The mass of the object is 4.00kg and the radius of the circle is 3.00m and the angular displacement of the object is 9.00rad.
Formula to calculate the angle make by the small object is,
α=9rad×180°πrad=515.66°−360°=155.66°
Formula to calculate the position vector of the small object is,
r→=Rcosαi^+Rsinαj^
Here, R is the radius of the circle and α is the angle turn by the object.
Substitute 3.00m for R and 155.66° for α in above vector notation.
Therefore, the velocity vector of the object is (−1.8i^−4.1j^)m/s.
(d)
Expert Solution
To determine
The quadrant in which the particle is moving.
Answer to Problem 10.26P
The object is moving in third quadrant in anticlockwise direction.
Explanation of Solution
The mass of the object is 4.00kg and the radius of the circle is 3.00m and the angular displacement of the object is 9.00rad.
Form part (c), Section (1), the angle made by the velocity vector from the positive axis is
245.66°.
Since the value of angle lies between 180° and 270°, the object lies in the third quadrant.
Conclusion:
Therefore, the object is moving in third quadrant in anticlockwise direction.
(e)
Expert Solution
To determine
The acceleration of the object.
Answer to Problem 10.26P
The acceleration of the object is
Explanation of Solution
Since the acceleration vector always be the perpendicular to the velocity vector. So, the angle that the acceleration vector made by the positive axis is,
θa=θv+90°
Substitute 245.66° for θv in above equation.
θv=245.66°+90°=335.66°
Formula to calculate the acceleration of the object is,
a=ω2r
Here, ω is the angular speed of the object.
Substitute 1.50rad/s for ω and 3.00m for r in above equation.
a=(1.50rad/s)2×3.00m=6.75m/s2
Formula to calculate the acceleration vector of the object is,
a→=acosθai^+asinθaj^
Substitute 6.75m/s2 for a and 335.66° for θa to find acceleration vector.
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Page 2
SECTION A
Answer ALL questions in Section A
[Expect to use one single-sided A4 page for each Section-A sub question.]
Question A1
SPA6308 (2024)
Consider Minkowski spacetime in Cartesian coordinates th
=
(t, x, y, z), such that
ds² = dt² + dx² + dy² + dz².
(a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V.
(b) Consider now the coordinate system x' (u, v, y, z) such that
u =t-x,
v=t+x.
[2 marks]
Write down the line element, the metric, the Christoffel symbols and the Riemann curvature
tensor in the new coordinates. [See the Appendix of this document.]
[5 marks]
(c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify
explicitly that V. V is invariant under the coordinate transformation.
Question A2
[5 marks]
Suppose that A, is a covector field, and consider the object
Fv=AAμ.
(a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a
coordinate transformation.
[5 marks]
(b)…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.