MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.22DQ
In Example 10.10 (Section 10.6) the rotational kinetic energy of the professor and dumbbells increases. But since there are no external torques, no work is being done to change the rotational kinetic energy. Then, by Eq. (10.22), the kinetic energy must remain the same! Explain what is wrong with this reasoning, which leads to an apparent contradiction. Where does the extra kinetic energy come from?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?
need help part d
A cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following.
Assume +x is in the eastward direction.
(a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.)
magnitude
direction
For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship
speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m
Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…
Chapter 10 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 10.1 - The accompanying figure shows a force P being...Ch. 10.2 - The figure shows a glider of mass m1 that can...Ch. 10.3 - Suppose the solid cylinder used as a yo-yo in...Ch. 10.4 - You apply equal torques to two different...Ch. 10.5 - A ball is attached to one end of a piece of...Ch. 10.6 - If the polar ice caps were to melt completely due...Ch. 10.7 - Suppose the mass of the flywheel in Fig. 10.34 is...Ch. 10 - Can a single force applied to a body change both...Ch. 10 - Suppose you could use wheels of any type in the...Ch. 10 - Serious bicyclists say that if you reduce the...
Ch. 10 - The harder you hit the brakes while driving...Ch. 10 - When an acrobat walks on a tightrope, she extends...Ch. 10 - When you turn on an electric motor, it takes...Ch. 10 - The work done by a force is the product of force...Ch. 10 - A valued client brings a treasured ball to your...Ch. 10 - You make two versions of the same object out of...Ch. 10 - Two identical masses are attached to frictionless...Ch. 10 - The force of gravity acts on the baton in Fig....Ch. 10 - A certain solid uniform bail reaches a maximum...Ch. 10 - A wheel is rolling without slipping on a...Ch. 10 - A hoop, a uniform solid cylinder, a spherical...Ch. 10 - A ball is rolling along al speed without slipping...Ch. 10 - You are standing at the center of a large...Ch. 10 - Global Warming. If the earths climate continues to...Ch. 10 - It two spinning objects have the same angular...Ch. 10 - A student is sitting on a frictionless rotating...Ch. 10 - A point particle travels in a straight line at...Ch. 10 - In Example 10.10 (Section 10.6) the angular speed ...Ch. 10 - In Example 10.10 (Section 10.6) the rotational...Ch. 10 - As discussed in Section 10.6, the angular momentum...Ch. 10 - If you stop a spinning raw egg for the shortest...Ch. 10 - A helicopter has a large main rotor that rotates...Ch. 10 - In a common design for a gyroscope, the flywheel...Ch. 10 - A gyroscope is precessing about a vertical axis....Ch. 10 - A gyroscope takes 3.8 s to precess 1.0 revolution...Ch. 10 - A gyroscope is precessing as in Fig. 10.32. What...Ch. 10 - A bullet spins on its axis as it emerges from a...Ch. 10 - Calculate the torque (magnitude and direction)...Ch. 10 - Calculate the net torque about point O for the two...Ch. 10 - A square metal plate 0.180m on each side is...Ch. 10 - Three forces are applied to a wheel of radius...Ch. 10 - One force acting on a machine part is...Ch. 10 - A metal bar is in the xy-plane with one end of the...Ch. 10 - A machinist is using a wrench lo loosen a nut. The...Ch. 10 - A uniform disk with mass 40.0 kg and radius 0.200...Ch. 10 - The flywheel of an engine has moment of inertia...Ch. 10 - A cord is wrapped around ihe rim of a solid...Ch. 10 - A machine part has the shape of u solid uniform...Ch. 10 - CP A stone is suspended from the free end of a...Ch. 10 - Prob. 10.13ECh. 10 - CP A 15.0-kg bucket of water is suspended by a...Ch. 10 - A wheel rotates without friction about a...Ch. 10 - A 12.0-kg box resting on a horizontal,...Ch. 10 - A 2.20-kg hoop 1.20 m in diameter is rolling to...Ch. 10 - BIO Gymnastics. We can roughly model a gymnastic...Ch. 10 - What fraction of the total kinetic energy is...Ch. 10 - A siring is wrapped several times around the rim...Ch. 10 - A solid ball is released from rest and slides down...Ch. 10 - A hollow, spherical shell with mass 2.00 kg rolls...Ch. 10 - A 392-N wheel comes off a moving truck and rolls...Ch. 10 - A uniform marble rolls down a symmetrical bowl,...Ch. 10 - A thin, light string is wrapped around the outer...Ch. 10 - A Ball Rolling Uphill. A bowling ball rolls...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A playground merry-go-round has radius 2.40 m and...Ch. 10 - An engine delivers 175 hp to an aircraft propeller...Ch. 10 - A 2.80-kg grinding wheel is in the form of a solid...Ch. 10 - An electric motor consumes 9.00 kJ of electrical...Ch. 10 - (a) Compute the torque developed by an industrial...Ch. 10 - An airplane propeller is 2.08 m in length (from...Ch. 10 - A 2.00-kg rock has a horizontal velocity of...Ch. 10 - A woman with mass 50 kg is standing on the rim of...Ch. 10 - Find the magnitude of the angular momentum of the...Ch. 10 - (a) Calculate the magnitude of the angular...Ch. 10 - CALC A hollow, thin-walled sphere of mass 12.0 kg...Ch. 10 - CP A small block on a frictionless, horizontal...Ch. 10 - Prob. 10.41ECh. 10 - A diver comes off a board with arms straight up...Ch. 10 - The Spinning Figure Skater. The outstretched hands...Ch. 10 - A solid wood door 1.00 m wide and 2.00 m high is...Ch. 10 - A large wooden turntable in the shape of a flat...Ch. 10 - Asteroid Collision! Suppose that an asteroid...Ch. 10 - Prob. 10.47ECh. 10 - A thin uniform rod has a length of 0.500 m and is...Ch. 10 - A thin, uniform metal bar. 2.00 m long and...Ch. 10 - A uniform. 4.5-kg, square, solid wooden gate 1.5 m...Ch. 10 - The rotor (flywheel) of a loy gyroscope has mass...Ch. 10 - A Gyroscope on the Moon. A certain gyroscope...Ch. 10 - Stabilization of the Hubble Space Telescope. The...Ch. 10 - A 50.0-kg grindstone is a solid disk 0.520 m in...Ch. 10 - 10.55A grindstone in the shape of a solid disk...Ch. 10 - A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 10 - A thin, uniform. 3.80-kg bar, 80.0 cm long, has...Ch. 10 - You are designing a simple elevator system for an...Ch. 10 - The Atwoods Machine. Figure P10.59 illustrates an...Ch. 10 - The mechanism shown in Fig. P10.60 is used to...Ch. 10 - A large 16.0-kg roll of paper with radius R = 18.0...Ch. 10 - A block with mass m = 5.00 kg slides down a...Ch. 10 - Two metal disks, one with radius R1 = 2.50 cm and...Ch. 10 - A lawn roller in the form of a thin-walled, hollow...Ch. 10 - Two weights are connected by a very light,...Ch. 10 - You complain about fire safety to the landlord of...Ch. 10 - The Yo-yo. A yo-yo is made from two uniform disks,...Ch. 10 - CP A thin-walled, hollow spherical shell of mass m...Ch. 10 - A basketball (which can be closely modeled as a...Ch. 10 - CP A solid uniform ball rolls without slipping up...Ch. 10 - Rolling Stones. A solid, uniform, spherical...Ch. 10 - You are designing a system for moving aluminum...Ch. 10 - A 42.0-cm-diameter wheel, consisting of a rim and...Ch. 10 - A uniform, 0.0300-kg rod of length 0.400 in...Ch. 10 - A uniform solid cylinder with mass M and radius 2R...Ch. 10 - Tarzan and Jane in the 21st Century. Tarzan has...Ch. 10 - A 5.00-kg ball is dropped from a height of 12.0 m...Ch. 10 - The solid wood door of a gymnasium is 1.00 m wide...Ch. 10 - A uniform rod of length L rests on a friction less...Ch. 10 - CP A large turntable with radius 6.00 m rotates...Ch. 10 - In your job as a mechanical engineer you are...Ch. 10 - A local ice hockey team has asked you to design an...Ch. 10 - You are designing a slide for a water park. In a...Ch. 10 - Neutron Star Glitches. Occasionally, a rotating...Ch. 10 - A 500.0-g bird is flying horizontally at 2.25 m/s,...Ch. 10 - CP A small block with mass 0.130 kg is attached to...Ch. 10 - A 55-kg runner runs around the edge of a...Ch. 10 - DATA The V6 engine in a 2014 Chevrolet Silverado...Ch. 10 - DATA You have one object of each of these shapes,...Ch. 10 - DATA You are testing a small flywheel (radius...Ch. 10 - CALC A block with mass m is revolving with linear...Ch. 10 - When an object is rolling without slipping, the...Ch. 10 - A demonstration gyroscope wheel is constructed by...Ch. 10 - The moment of inertia of the empty turntable is...Ch. 10 - While the turntable is being accelerated, the...Ch. 10 - A doubling of the torque produces a greater...Ch. 10 - If the bodys center of mass were not placed on the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. When the ultraviolet light from hot st...
Cosmic Perspective Fundamentals
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
15. In the Olympic shotput event, an athlete throws the shot with an initial speed of 12.0 m/s at a 40.0° angle...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
91. Classify each molecule as polar nonpolar.
a.
b.
c.
d.
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- î A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forward
- For which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forwardA map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY