EBK MATERIALS FOR CIVIL AND CONSTRUCTIO
4th Edition
ISBN: 8220102719569
Author: ZANIEWSKI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.21QP
a)
To determine
Draw the graph between load and deflection using spread sheet.
b)
To determine
Plot the proportional limit on the graph.
c)
To determine
The modulus of rupture of the wood lumber.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A wood specimen was subjected to bending until failure by applying a load inthe middle of its span. The specimen has a cross section of 25 mm * 25 mm(actual dimensions) and a span of 350 mm between the simple supports. Theload and the deflection in the middle of the span were recorded as shown inTable P10.22.a. Using a computer spreadsheet program, plot the load–deflectionrelationship.b. Plot the proportional limit on the graph.c. Calculate the modulus of rupture (flexure strength).
A wood specimen having a square cross section of 2-inch x 2-inch (actual dimensions) was tested in bending by applying a load at the middle of the span, where the span between the simple supports was 28 inches. The deflection under the load was measured (see below). Plot the load versus deflection relationship. Identify the proportional limit on the diagram. Calculate the modulus of rupture. Does the modulus of rupture truly represent the extreme fiber stresses in the specimen? Comment on the assumptions used to compute the modulus of rupture and the actual response of the wood specimen
A wood specimen was subjected to bending until failure by applying a loadin the middle of its span. The specimen has a cross section of 1 in. * 1 in.(actual dimensions) and a span of 14 in. between the simple supports. Theload and the deflection in the middle of the span were recorded as shown inTable P10.22.a. Using a computer spreadsheet program, plot the load–deflectionrelationship.b. Plot the proportional limit on the graph.c. Calculate the modulus of rupture (flexure strength).
Chapter 10 Solutions
EBK MATERIALS FOR CIVIL AND CONSTRUCTIO
Ch. 10 - What are the two main classes of wood? What is the...Ch. 10 - Prob. 10.2QPCh. 10 - Prob. 10.3QPCh. 10 - Discuss the anisotropic nature of wood. How does...Ch. 10 - Prob. 10.5QPCh. 10 - Prob. 10.6QPCh. 10 - Prob. 10.7QPCh. 10 - Prob. 10.8QPCh. 10 - Prob. 10.9QPCh. 10 - Prob. 10.10QP
Ch. 10 - Prob. 10.11QPCh. 10 - Prob. 10.12QPCh. 10 - Prob. 10.13QPCh. 10 - Prob. 10.14QPCh. 10 - Prob. 10.15QPCh. 10 - Prob. 10.16QPCh. 10 - Prob. 10.17QPCh. 10 - Prob. 10.18QPCh. 10 - Prob. 10.19QPCh. 10 - Prob. 10.20QPCh. 10 - Prob. 10.21QPCh. 10 - Prob. 10.22QPCh. 10 - Prob. 10.23QPCh. 10 - A wood specimen was prepared with actual...Ch. 10 - A pine wood specimen was prepared with actual...Ch. 10 - Prob. 10.26QPCh. 10 - Prob. 10.27QPCh. 10 - Prob. 10.28QPCh. 10 - Prob. 10.29QPCh. 10 - Prob. 10.30QPCh. 10 - Prob. 10.31QPCh. 10 - Prob. 10.32QPCh. 10 - Prob. 10.33QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pine wood specimen was prepared with actual dimensions of 50 mmx50 mm x 250 mm and grain parallel to its length. The deformation was measured over a gauge length of 200 mm. The specimen was subjected to compression parallel to the grain failure. The load- deformation results are shown in table below: Load (kN) Deformation (mm) 8.9 0.457 17.8 0.597 26.7 0.724 34.5 0.838 43 0.965 52.9 1.118 62.01 1.27 71.03 1.422 80.1 1.588 89 1.765 99.6 1.956 108 2.159 111.3 2.311 112 2.456 a. Using a computer spreadsheet program, plot the stress-strain relationship. b. Calculate the modulus of elasticity. С. What is the failure stress?arrow_forwardThe grains of wood in the board make an angle of 20° with the horizontal as shown. The board is subjected to an axial load of P = 300 N. (Figure 1) Part A Determine the normal stress that acts perpendicular to the grains. Express your answer to three significant figures and include the appropriate units. µA Value Units Submit Request Answer Figure < 1 of 1 Part B Determine the shear stress that acts parallel to the grains. Express your answer to three significant figures and include the appropriate units. HA -300 mm 160 mm Ta'y = Value Units 20° 25 mm1 Submit Request Answerarrow_forwardCompute the modulus of elasticity of the wood species whose stress–strainrelationship is shown in Figure 10.12, using both the SI and English units.Compare the results with the typical values shown in Table 1.1 in Chapter 1and comment about the results.arrow_forward
- I need the answer quicklyarrow_forwardThe grains of wood in the board make an angle of 20° with the horizontal as shown. The board is subjected to an axial load of P = 250 N . (Figure 1) Part A Determine the normal stress that acts perpendicular to the grains. Express your answer to three significant figures and include the appropriate units. µA Value Units Figure 1 of 1 Submit Request Answer Part B 300 mm Determine the shear stress that acts parallel to the grains. 60 mm Express your answer to three significant figures and include the appropriate units. 20° 25 mm HẢ ? Value Units P Pearsonarrow_forwardA wood beam reinforced by an aluminum channel section is shown in the figure. 150 mm 230 mm 38 mm 6.5 mm -163 mm- The beam has a cross section of dimensions 150 mm x 230 mm, and the channel has a uniform thickness of 6.5 mm. If the allowable stresses in the wood and aluminum are 8 MPa and 50 MPa, respectively, and if their moduli of elasticity are in the ratio 1 to 6, what is the maximum allowable bending moment for the beam? Enter the magnitude in kN · m. (Assume that the component parts of the beam are securely bonded by adhesives or connected by fasteners. Also, be sure to use the transformed-section method in the solution.) (No Response) 14.06 kN· marrow_forward
- please check data question properly dont copy previous answers.arrow_forwardThe wood has an allowable normal stress of Oallow = 15 MPa and an allowable shear stress of Tallow = 1.33 MPa. (Figure 1) Part A Determine the minimum dimension h of the beam's cross section to safely support the load. Express your answer to three significant figures and include the appropriate units. µA ? h = Value Units Submit Request Answer Figure Provide Feedback 25 kN/m B 2 m 100 mmarrow_forwardplease solve it quickly, thanks ❤️arrow_forward
- Describe the failure mode of a composite beam loaded to failure in flexure. Hint; Think about what the design equations for determining the nominal moment (Mn) capacity tell one.arrow_forwardANSWER THE PROBLEM GIVE WHAT IS ASKED, SHOW YOUR SOLUTION, AND BOX THE FINAL ANSWERS. WRITE IT ON A CLEAN PAPER CLEARLY. I WILL GIVE THE FEEDBACK RATING AS POSSIBLE, YOU CAN ANSWER IT. THANK YOUarrow_forwardA third-point bending test was performed on a 100 * 150 mm wood lumber according to ASTM D198 procedure with a span of 1.8 m and the 150 mm side is positioned vertically. A strain gauge is glued at the center point between the supports. The strain gauge is zeroed at the start of the test when the force is zero. A strain of 0.00456 is measured when the combined load is 6.672 kN and the load–strain curve is in the linear range. Determine the flexural modulus of elasticity. If the maximum combined load on both loading bearings was 22.722 kN, calculate the modulus of rupture.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning