Can a single force applied to a body change both its translational and rotational motions? Explain.
The explanation for statement that a single force applied to a body can change both its translational and rotational motion.
Explanation of Solution
Motion which involves the shifting of an object from one point in space to another point in three dimensional coordinates is known as the translational motion whereas rotational motion is the one in which the body spins around an axis in the continuous way.
The translational and rotational motion of the body gets affected unless the force is applied to the center of mass of the body.
When the pencil upright in the hand of a person is subjected to a flick on the top of the pencil then the both translational and rotational motion gets changed due this single force on the top of the pencil.
Conclusion:
The single force acting on a body can affect the translational motion which is the motion of the whole body and also causes the rotational motion if the force is applied on the suitable point.
Want to see more full solutions like this?
Chapter 10 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Modern Physics
Essential University Physics: Volume 2 (3rd Edition)
College Physics
Cosmic Perspective Fundamentals
The Cosmic Perspective
The Cosmic Perspective Fundamentals (2nd Edition)
- Consider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forwardAn automobile engine can produce 200Nm of torque. Calculate the angular acceleration produced if 95.0 of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.arrow_forwardA competitive diver leaves the diving board and falls toward the water with her body straight and rotating slowly. She pulls her arms and legs into a tight tuck position. What happens to her rotational kinetic energy? (a) It increases. (b) It decreases. (c) It stays the same. (d) It is impossible to determine.arrow_forward
- A solid, uniform disk of radius 0.250 m and mass 55.0 kg rolls down a ramp of length 4.50 m that makes an angle of 15.0 with the horizontal. The disk starts from rest from the top of the ramp. Find (a) the speed of the disks center of mass when it reaches the bottom of the ramp and (b) the angular speed of the disk at the bottom of the ramp.arrow_forwardA student rides his bicycle at a constant speed of 3.00 m/s along a straight, level road. If the bikes tires each have a radius of 0.350 m, (a) what is the tires angular speed? (See Section 7.3.) (b) What is the net torque on each tire? (See Section 8.5.)arrow_forwardA carnival carousel accelerates nonuniformly from rest, moving through an angle of 8.60 rad in 6.00 s. If its turning at 3.30 rad/s at that time, find (a) its average angular speed, and (b) average angular acceleration during that time interval. (See Section 7.1.)arrow_forward
- Why is the following situation impossible? A space station shaped like a giant wheel (Fig. P11.28, page 306) has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g. A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a lest to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening. Figure P11.28arrow_forwardRigid rods of negligible mass lying along the y axis connect three particles (Fig. P10.18). The system rotates about the x axis with an angular speed of 2.00 rad/s. Find (a) the moment of inertia about the x axis, (b) the total rotational kinetic energy evaluated from 12I2, (c) the tangential speed of each particle, and (d) the total kinetic energy evaluated from 12mivi2. (e) Compare the answers for kinetic energy in parts (b) and (d). Figure P10.18arrow_forwardA horizontal disk with moment of inertia I1 rotates with angular speed 1 about a vertical frictionless axle. A second horizontal disk having moment of inertia I2 drops onto the first, initially not rotating but sharing the same axis as the first disk. Because their surfaces are rough, the two disks eventually reach the same angular speed . The ratio /l is equal to (a) I1/I2 (b) I2/I1 (c) I1/( I1 + I2) (d) I2/( I1 + I2)arrow_forward
- Two astronauts (Fig. P10.67), each having a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one astronaut shortens the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardConsider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardStars originate as large bodies of slowly rotating gas. Because of gravity, these clumps of gas slowly decrease in size. What happens to the angular speed of a star as it shrinks? Explain.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University