
Concept explainers
Interpretation:
The partial pressure and total pressure of the given mixtures are to be calculated.
Concept introduction:
The mole fraction of an individual gas for the combination of gases is the ratio of the moles of the individual gas with the total number of moles.
Here,
The mole fraction of an individual gas for the combination of gases can be calculated from the ratio of the partial pressure of the individual gas with the total pressure of the combination.
Here,

Answer to Problem 101AP
Solution:
(a)The pressure of flask (iii) is
(b)The total pressure after opening the valve is
Explanation of Solution
Given information:
Volume:
Pressure:
a)The pressure in flak (ii) and (iii)
The number of molecules in flask (i) is 9, whereas in flask (ii) the number of molecules is also 9.
The volume of flask (i) is
Now, the temperature and number of moles are constant and the volume of flask (ii) is half of the volume of flask (i), so the pressure of flask (ii) will be:
Substitute
The number of molecules in flask (iii) is
The volume of flask (iii) is
So, the pressure of flask (ii) will be:
Substitute
Hence, the pressure of flask (iii) is
b) The total pressure and the partial pressure of each gas after the valves are opened.
Before opening the valves, flask (i) is considered.
So,
After opening the valves, the total of all flasks is considered.
So,
The combined gas law forms the relationship between pressure, volume, temperature, and number of moles. This can be shown as
For constant temperature:
Rearrange the above equation for final pressure as follows:
Substitute
The number of red color sphere is 15.
The number of blue color sphere is 15.
So, the total number of moles is as follows:
Substitute
Calculate the mole fraction of red color sphere as follows:
Substitute
Calculate the mole fraction of the blue color sphere as follows:
Substitute
Calculate the partial pressure of the red gas as
Substitute
Calculate the partial pressure of the blue gas as follows:
Substitute
Hence, the total pressure after opening the valve is
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry
- How to draw the mechanism for this reaction?arrow_forward> H₂C=C-CH2-CH3 B. H₂O Pt C. + H2 + H₂O H D. 16. Give the IUPAC name for each of the following: B. Cl Cl c. Cl Cl 17. Draw the line-angle formula for each of the following compounds: 1. phenol 2. 1,3-dichlorobenzene 3. 4-ethyltoluene < Previous Submit Assignment Next ▸arrow_forwardno Ai walkthroughsarrow_forward
- The answer is shown. What is the reaction mechanism to arrive at the answer?arrow_forwardno Ai walkthroughsarrow_forwardConsider the following nucleophilic substitution reaction. The compound listed above the arrow is the solvent for the reaction. If nothing is listed over the arrow, then the nucleophile is also the solvent for the reaction. Part 1 of 2 Br CH,CN + I¯ What is the correct mechanism for the reaction? Select the single best answer. @SN2 ○ SN 1 Part: 1/2 Part 2 of 2 Draw the products for the reaction. Include both the major organic product and the inorganic product. If more than one stereoisomer is possible, draw only one stereoisomer. Include stereochemistry where relevant. Click and drag to start drawing a structure. X હૈarrow_forward
- 20.33 Think-Pair-Share (a) Rank the following dienes and dienophiles in order of increasing reactivity in the Diels-Alder reaction. (i) CO₂Et (ii) COEt || CO₂Et MeO MeO (b) Draw the product that results from the most reactive diene and most reactive dienophile shown in part (a). (c) Draw a depiction of the orbital overlap involved in the pericyclic reaction that oc- curs between the diene and dienophile in part (b). (d) Is the major product formed in part (b) the endo or exo configuration? Explain your reasoning.arrow_forward20.40 The following compound undergoes an intramolecular Diels-Alder reaction to give a tricyclic product. Propose a structural formula for the product. CN heat An intramolecular Diels-Alder adductarrow_forwardWhat is the reaction mechanism for this? Can this even be done without a base?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





