Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.17QP
To determine
The modulus of elasticity of the wood pieces using SI and English units and compares the value to the typical values of Table (1.1).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A wood specimen was prepared with actual dimensions of 25 mm * 25 mm *150 mm and grain parallel to its length. Displacement was measured over a100 mm gauge length. The specimen was subjected to compression parallel to the grain to failure. The load–deformation results are as shown in Table P10.24.
a. Using a computer spreadsheet program, plot the stress–strain relationship.b. Calculate the modulus of elasticity.c. What is the failure stress?
A wood beam reinforced by an aluminum channel section is shown in the figure.
150 mm
230 mm
38 mm
6.5 mm
-163 mm-
The beam has a cross section of dimensions 150 mm x 230 mm, and the channel has a uniform thickness of 6.5 mm. If the allowable stresses in the wood and aluminum are 8 MPa and 50 MPa, respectively, and if their moduli of elasticity are in the ratio 1 to 6, what is the maximum allowable bending moment for the beam? Enter the magnitude in kN · m. (Assume that the component parts
of the beam are securely bonded by adhesives or connected by fasteners. Also, be sure to use the transformed-section method in the solution.)
(No Response)
14.06 kN· m
A wood beam reinforced by an aluminum channel section is shown in the figure.
150 mm
232 mm
38 mm
6.5 mm
163 mm-
The beam has a cross section of dimensions 150 mm x 232 mm, and the channel has a uniform thickness of 6.5 mm. If the allowable stresses in the wood and aluminum are 8 MPa and 46 MPa, respectively, and if their
moduli of elasticity are in the ratio 1 to 6, what is the maximum allowable bending moment for the beam? Enter the magnitude in kN • m. (Assume that the component parts of the beam are securely bonded by
adhesives or connected by fasteners. Also, be sure to use the transformed-section method in the solution.)
kN m
Chapter 10 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 10 - What are the two main classes of wood? What is the...Ch. 10 - Prob. 10.2QPCh. 10 - Prob. 10.3QPCh. 10 - Discuss the anisotropic nature of wood. How does...Ch. 10 - Prob. 10.5QPCh. 10 - Prob. 10.6QPCh. 10 - Prob. 10.7QPCh. 10 - Prob. 10.8QPCh. 10 - Prob. 10.9QPCh. 10 - Prob. 10.10QP
Ch. 10 - Prob. 10.11QPCh. 10 - Prob. 10.12QPCh. 10 - Prob. 10.13QPCh. 10 - Prob. 10.14QPCh. 10 - Prob. 10.15QPCh. 10 - Prob. 10.16QPCh. 10 - Prob. 10.17QPCh. 10 - Prob. 10.18QPCh. 10 - Prob. 10.19QPCh. 10 - Prob. 10.20QPCh. 10 - Prob. 10.21QPCh. 10 - Prob. 10.22QPCh. 10 - Prob. 10.23QPCh. 10 - A wood specimen was prepared with actual...Ch. 10 - A pine wood specimen was prepared with actual...Ch. 10 - Prob. 10.26QPCh. 10 - Prob. 10.27QPCh. 10 - Prob. 10.28QPCh. 10 - Prob. 10.29QPCh. 10 - Prob. 10.30QPCh. 10 - Prob. 10.31QPCh. 10 - Prob. 10.32QPCh. 10 - Prob. 10.33QP
Knowledge Booster
Similar questions
- Compute the modulus of elasticity of the wood species whose stress–strainrelationship is shown in Figure 10.12, using both the SI and English units.Compare the results with the typical values shown in Table 1.1 in Chapter 1and comment about the results.arrow_forwardMechanics of Deformable Bodies Show complete and detailed solution. Write legibly. Draw illustrations. Follow the decimals places on the directionarrow_forwardA 32-mm rebar with a gauge length of 200 mm was subjected to tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P3.33. Using a spreadsheet program obtain the following: a. A plot of the stress-strain relationship. Label the axes and show units. b. A plot of the linear portion of the stress-strain relationship. Determine modulus of elasticity using the best-fit approach. c. Proportional limit. d. Yield stress. e. Ultimate strength. f. If the rebar is loaded to 390 kN only and then unloaded, what is the permanent change in length? TABLE P3.3 3 Load (kN) Displacement (mm) Load (kN) Displacement (mm) 472.9 8.4 62.2 0.1 487.1 9.7 188.9 0.2 496.4 11.1 329.8 0.4 505.7 12.4 383.4 1.7 512.8 13.7 426.0 4.0 522.6 15.3 447.3 5.9 532.4 18.5 462.5 7.2 525.9 22.4arrow_forward
- Three steel bars have a diameter of 25 mm and carbon contents of 0.2, 0.5, and 0.8%, respectively. The specimens were subjected to tension until rupture. The load versus deformation results were as shown in Table P3.19. If the gauge length is 50 mm, determine the following: a. The tensile stresses and strains for each specimen at each load increment. b. Plot stresses versus strains for all specimens on one graph. TABLE P3.19 Specimen No. Carbon Content (%) 1 3 0.2 0.5 0.8 Deformation (mm) Load (kN) 0.00 0.07 133 133 133 0.10 137 191 191 0.15 142 196 285 0.50 147 201 324 1.00 140 199 383 2.50 155 236 447 5.00 196 295 491 (Rupture) 7.50 226 336 10.00 241 341 12.50 218 304 (Rupture) 13.75 196 (Rupture) c. The proportional limit for each specimen. d. The 0.2% offset yield strength for each specimen. e. The modulus of elasticity for each specimen. f. The strain at rupture for each specimen. g. Comment on the effect of increasing the carbon content on the following: Yield strength ii.…arrow_forwardAn ASTM A615 grade 60 number 10 rebar with a gauge length of 8 in. was subjected to tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table .Using a spreadsheet program, obtain the following:a. A plot of the stress–strain relationship. Label the axes and show units.b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best-fit approach.c. Proportional limit.arrow_forwardA 32-mm rebar with a gauge length of 200 mm was subjected to tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in TableUsing a spreadsheet program obtain the following:a. A plot of the stress–strain relationship. Label the axes and show units.b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best-fit approach.c. Proportional limit.d. Yield stress.e. Ultimate strength.f. If the rebar is loaded to 390 kN only and then unloaded, what is the permanent change in length?arrow_forward
- I need only handwritten or i will dislike for surearrow_forwardA bar having the cross section shown has been formed by securely bonding brass and aluminum stock. Using the data given in the table, determine the largest permissible bending moment when the composite bar is bent about a vertical axis. Take x = 30 mm. Modulus of elasticity Allowable stress Aluminum Brass Aluminum 70 GPa 100 MPa 10 mm 10 mm 40 mm- Brass 105 GPa 160 MPa 10 mm X 10 mm The largest permissible bending moment when the composite bar is bent about a vertical axis is 1.689 kN.m.arrow_forward3.* Figure 3 shows a tapered glued joint between two pieces of wood subjected to a tensile force. If the glue can sustain a maximum average tensile stress of 30 MPa and/or a maximum average shear stress of 50 MPa, what is the maximum angle that will permit the joint to transmit a tensile force F = 25 kN with a safety factor of 3.0? [Ans: 23⁰] F 1.6 A 3.4 Ө all dimensions in cm Farrow_forward
- A wood specimen was subjected to bending until failure by applying a load inthe middle of its span. The specimen has a cross section of 25 mm * 25 mm(actual dimensions) and a span of 350 mm between the simple supports. Theload and the deflection in the middle of the span were recorded as shown inTable P10.22.a. Using a computer spreadsheet program, plot the load–deflectionrelationship.b. Plot the proportional limit on the graph.c. Calculate the modulus of rupture (flexure strength).arrow_forwardA bar having the cross section shown has been formed by securely bonding brass and aluminum stock. Using the data given in the table, determine the largest permissible bending moment when the composite bar is bent about a horizontal axis. Take x = 32 mm. Modalus of elasticity Allowable stress Aluminum Brass Aluminum 70 GPa 100 MPa 10 mm 10 mm Brass 105 GPa 160 MPa 10 mm mm 10 mm The largest permissible bending moment when the composite bar is bent about a horizontal axis is [ kN-m.arrow_forwardA 100 mm * 100 mm wood lumber was subjected to bending with a span of 1.5 m until failure by applying a load in the middle of its span. The load and the deflection in the middle of the span were recorded as shown in Table P10.21. a. Using a computer spreadsheet program, plot the load–deflection relationship. b. Plot the proportional limit on the graph. c. Calculate the modulus of rupture (flexure strength).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning