Question
Book Icon
Chapter 10, Problem 10.12P

(a)

Interpretation Introduction

Interpretation:

A rate law that is consistent with the experimental data is to be stated.

Concept introduction:

The rate law of the chemical reaction states that the rate of reaction is the function of the concentration of the reactants and the products present in that specific reaction. The rate is actually predicted by the slowest step of the reaction.

If there is a chemical reaction which has reactants A and B that reacts to form products then their rate law is given as follows.

    r=k[A]a[B]b

Here, [A] is the concentration of the reactant A, [B] is the concentration of the reactant B and k is the rate constant.

(b)

Interpretation Introduction

Interpretation:

The species that is adsorbed on the catalyst surface is to be stated.

Concept Introduction:

The rate law of the chemical reaction states that the rate of reaction is the function of the concentration of the reactants and the products present in that specific reaction. The rate is actually predicted by the slowest step of the reaction.

If there is a chemical reaction which has reactants A and B that reacts to form products then their rate law is given as follows.

    r=k[A]a[B]b

Here, [A] is the concentration of the reactant A, [B] is the concentration of the reactant B and k is the rate constant.

(c)

Interpretation Introduction

Interpretation:

A rate law whose mechanism is constant with rate law given in part (a) is to be stated.

Concept Introduction:

The rate law of the chemical reaction states that the rate of reaction is the function of the concentration of the reactants and the products present in that specific reaction. The rate is actually predicted by the slowest step of the reaction.

If there is a chemical reaction which has reactants A and B that reacts to form products then their rate law is given as follows.

    r=k[A]a[B]b

Here, [A] is the concentration of the reactant A, [B] is the concentration of the reactant B and k is the rate constant.

(d)

Interpretation Introduction

Interpretation:

The ratio of A to C sites at 80% conversion of A if entering partial pressure of A is 2atm is to be stated.

Concept Introduction:

The rate law of the chemical reaction states that the rate of reaction is the function of the concentration of the reactants and the products present in that specific reaction. The rate is actually predicted by the slowest step of the reaction.

If there is a chemical reaction which has reactants A and B that reacts to form products then their rate law is given as follows.

    r=k[A]a[B]b

Here, [A] is the concentration of the reactant A, [B] is the concentration of the reactant B and k is the rate constant.

(e)

Interpretation Introduction

Interpretation:

The conversion at which the numbers of A and C sites are equal is to be stated.

Concept Introduction:

The rate law of the chemical reaction states that the rate of reaction is the function of the concentration of the reactants and the products present in that specific reaction. The rate is actually predicted by the slowest step of the reaction.

If there is a chemical reaction which has reactants A and B that reacts to form products then their rate law is given as follows.

    r=k[A]a[B]b

Here, [A] is the concentration of the reactant A, [B] is the concentration of the reactant B and k is the rate constant.

(f)

Interpretation Introduction

Interpretation:

The catalyst weight that is required to achieve 90% conversion of A is to be stated.

Concept Introduction:

The rate law of the chemical reaction states that the rate of reaction is the function of the concentration of the reactants and the products present in that specific reaction. The rate is actually predicted by the slowest step of the reaction.

If there is a chemical reaction which has reactants A and B that reacts to form products then their rate law is given as follows.

    r=k[A]a[B]b

Here, [A] is the concentration of the reactant A, [B] is the concentration of the reactant B and k is the rate constant.

Blurred answer
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The