
Concept explainers
Interpretation: The balance form of given
Concept introduction: In balanced form of chemical reaction number of atoms and total charge of reactants and products are same.
To determine: The balance form of given chemical reaction occurring in basic solution.

Answer to Problem 10.121AP
The balanced reaction is,
Explanation of Solution
The given unbalanced chemical reaction is,
In balanced form of chemical reaction number of atoms and total charge of reactants and products are same.
To balance the above equation (1) following steps are followed.
Step 1:
Calculate the oxidation state of each atom of given charge compounds.
The oxidation state of oxygen is
The oxidation state of iodine is assumed to be
The oxidation state of
The oxidation state of oxygen is
The oxidation state of sulfur is assumed to be
The oxidation state of
Step 2:
Identify the oxidation and reduction reaction and separate them as half reactions.
In oxidation process, oxidation state of atoms increased by some number.
In reduction process, oxidation state of atoms decreased by some number.
Step 3:
Balance the atoms of reactant and product.
Balance
Balance
Balance
Balance
Step 4:
Balance each half reaction with respect to charge.
Balance the charge of oxidation half reaction by the addition of
Balance the charge of reduction half reaction by the addition of
Step 5:
Make the number of electrons equal on both sides of oxidation and reduction half reaction.
Multiply oxidation half reaction with three on both sides.
Step 6:
To get overall reaction add the half reactions together and remove common terms.
Thus, the balanced reaction is,
The balanced reaction is,
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry Smartwork Access Code Fourth Edition
- Draw the major product of this reaction. Nitropropane reacts + pent-3-en-2-one reacts with NaOCH2CH3, CH3CHOHarrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. OC2H5 + CoHs-NH-NH,arrow_forwardExplain how substitutions at the 5-position of barbituric acid increase the compound's lipophilicity.arrow_forward
- Explain how substitutions at the 5-position of phenobarbital increase the compound's lipophilicity.arrow_forwardName an interesting derivative of barbituric acid, describing its structure.arrow_forwardBriefly describe the synthesis mechanism of barbituric acid from the condensation of urea with a β-diketone.arrow_forward
- Given the hydrazones indicated, draw the structures of the enamines that can be formed. Indicate the most stable enamine (explain). C6H5 C6H5 H C6H5 Harrow_forward4. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn.arrow_forwardIndicate the importance of the indole ring. Find a representative example and list 5 structures.arrow_forward
- ΌΗ 1) V2 CO 3 or Nalt In منهarrow_forward6. The equilibrium constant for the reaction 2 HBr (g) → H2(g) + Br2(g) Can be expressed by the empirical formula 11790 K In K-6.375 + 0.6415 In(T K-¹) - T Use this formula to determine A,H as a function of temperature. Calculate A,-H at 25 °C and at 100 °C.arrow_forward3. Nitrosyl chloride, NOCI, decomposes according to 2 NOCI (g) → 2 NO(g) + Cl2(g) Assuming that we start with no moles of NOCl (g) and no NO(g) or Cl2(g), derive an expression for Kp in terms of the equilibrium value of the extent of reaction, Seq, and the pressure, P. Given that K₂ = 2.00 × 10-4, calculate Seq/ of 29/no when P = 0.080 bar. What is the new value по ƒª/ at equilibrium when P = 0.160 bar? Is this result in accord with Le Châtelier's Principle?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





