Concept explainers
(a)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.
Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(b)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.
Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by adding the mass of the captured particle and the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by adding the charge on the emitted particle and the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(c)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.
Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the daughter nucleus from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the daughter nucleus from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(d)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.
Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(e)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.
Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the emitted particle from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the emitted particle from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
(f)
Interpretation:
The balanced equation for the decay reaction of the given isotope is to be stated.
Concept introduction:
The type of radioactive decay in which an alpha particle is emitted by the nucleus of an atom such that an atom of another element is produced after decay is known as alpha decay. An alpha particle is a helium nucleus. The radioactive decay in which a positron or an electron is emitted is known as beta decay.
Answer to Problem 10.11E
The balanced equation for the decay reaction of the given isotope is,
Explanation of Solution
The given parent nucleus is
The net mass is obtained by subtracting the mass of the daughter nucleus from the mass of the parent nucleus. Therefore, the net mass is,
The net charge is obtained by subtracting the charge on the daughter nucleus from the charge on the parent nucleus. Therefore, the net charge is,
The nucleus that has
The balanced equation for the decay reaction of the given isotope is,
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Chemistry for Today: General, Organic, and Biochemistry, Loose-Leaf Version, 9th + LMS Integrated OWLv2, 4 terms (24 months) Printed Access Card
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Pheromone G of the maize stalk borer, chilo partelus, can be synthesized based on the partial scheme shown below. Complete the scheme by identifying the structures of the intermediate compounds A, B, C, D, E, F and pheromone G. Indicate stereochemistry where relevantarrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor. одarrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 DD I II NH2arrow_forward
- Complete the following reaction by identifying the principle organic product of the reactionarrow_forwardDenote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning