Concept explainers
(a)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(b)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(c)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(d)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
- Redraw the molecule below as a skeletal ("line") structure. Be sure to use wedge and dash bonds if necessary to accurately represent the direction of the bonds to ring substituents. Cl. Br Click and drag to start drawing a structure. : ☐ ☑ Parrow_forwardK m Choose the best reagents to complete the following reaction. L ZI 0 Problem 4 of 11 A 1. NaOH 2. CH3CH2CH2NH2 1. HCI B OH 2. CH3CH2CH2NH2 DII F1 F2 F3 F4 F5 A F6 C CH3CH2CH2NH2 1. SOCl2 D 2. CH3CH2CH2NH2 1. CH3CH2CH2NH2 E 2. SOCl2 Done PrtScn Home End FA FQ 510 * PgUp M Submit PgDn F11arrow_forwardNonearrow_forward
- Add curved arrows to the reactants in this reaction. A double-barbed curved arrow is used to represent the movement of a pair of electrons. Draw curved arrows. : 0: si H : OH :: H―0: Harrow_forwardConsider this step in a radical reaction: Br N O hv What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. O primary Otermination O initialization O electrophilic O none of the above × ☑arrow_forwardNonearrow_forward
- Can I get a drawing of what is happening with the orbitals (particularly the p orbital) on the O in the OH group? Is the p orbital on the O involved in the ring resonance? Why or why not?arrow_forward1) How many monochlorination products-including stereochemistry- are there for the molecule below:arrow_forwardSelect an amino acid that has and N-H or O-H bond in its R-group (you have 8 to choose from!). Draw at least two water molecules interacting with the R-group of the amino acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY