EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 9RQ
To determine
Enlist every major types of imperfection in the crystal structure of metals, and elaborate the same.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
WHAT is meant by dislocation? State different types of dislocation with neat sketches .
define 3 types of defects in metal
Show your all work
Chapter 1 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 1 - What is the difference between an atom and a...Ch. 1 - Prob. 2RQCh. 1 - Prob. 3RQCh. 1 - Prob. 4RQCh. 1 - Define anisotropy. What is its significance?Ch. 1 - What effects does recrystallization have on the...Ch. 1 - What is strain hardening, and what effects does it...Ch. 1 - Explain what is meant by structure-sensitive and...Ch. 1 - Prob. 9RQCh. 1 - What influence does grain size have on the...
Ch. 1 - What is the relationship between the nucleation...Ch. 1 - What is a slip system, and what is its...Ch. 1 - Explain the difference between recovery and...Ch. 1 - What is hot shortness, and what is its...Ch. 1 - Explain the advantages and limitations of cold,...Ch. 1 - Describe what the orange peel effect is. Explain...Ch. 1 - Some metals, such as lead, do not become stronger...Ch. 1 - Describe the difference between preferred...Ch. 1 - Differentiate between stress relaxation and stress...Ch. 1 - What is twinning? How does it differ from slip?Ch. 1 - Prob. 21QLPCh. 1 - What is the significance of the fact that some...Ch. 1 - Is it possible for two pieces of the same metal to...Ch. 1 - Prob. 24QLPCh. 1 - A cold-worked piece of metal has been...Ch. 1 - What materials and structures can you think of...Ch. 1 - Two parts have been made of the same material, but...Ch. 1 - Do you think it might be important to know whether...Ch. 1 - Explain why the strength of a polycrystalline...Ch. 1 - Describe the technique you would use to reduce the...Ch. 1 - What is the significance of the fact that such...Ch. 1 - Prob. 32QLPCh. 1 - It has been noted that the more a metal has been...Ch. 1 - Is it possible to cold work a metal at...Ch. 1 - Comment on your observations regarding Fig. 1.14.Ch. 1 - Is it possible for a metal to be completely...Ch. 1 - Prob. 37QTPCh. 1 - Prob. 38QTPCh. 1 - Plot the data given in Table 1.1 in terms of...Ch. 1 - A strip of metal is reduced from 30 mm in...Ch. 1 - Prob. 41QTPCh. 1 - How many grains are there on the surface of the...Ch. 1 - Prob. 43QTPCh. 1 - Prob. 44QTPCh. 1 - Prob. 45QTPCh. 1 - A technician determines that the grain size of a...Ch. 1 - If the diameter of the aluminum atom is 0.28 nm,...Ch. 1 - The following data are obtained in tension tests...Ch. 1 - Prob. 50QTPCh. 1 - Prob. 51QTPCh. 1 - Prob. 52QTPCh. 1 - Same as Prob. 1.39, but ASTM no. versus...Ch. 1 - By stretching a thin strip of polished metal, as...Ch. 1 - Draw some analogies to mechanical fiberingfor...Ch. 1 - Draw some analogies to the phenomenon of hot...Ch. 1 - Take a deck of playing cards, place a rubber band...Ch. 1 - Give examples in which anisotropy is scale...Ch. 1 - The movement of an edge dislocation was described...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Slip Systems 1. One slip system for the BCC crystal structure is {110}(111). In a manner similar to Figure 7.6b, sketch a {110} -type plane for the BCC structure, representing atom positions with circles. Now, using arrows, indicate two different (111) slip directions within this plane. E D (a) Figure 7.6 B A D E F (b)arrow_forwardExplain why BCC (body-centered cubic) materials generally have higher mechanical strength values than FCC (face-centered cubic) materials in terms of (a) slip systems and (b) extended dislocations.arrow_forwardExplain the types of dislocations in a crystal structure with neat diagramsarrow_forward
- pls give proper handwritten solution.arrow_forwardA single crystal Al,O, rod (precisely 6 mm diameter7 60 mm long) is used to apply loads to smalsamples in a high-precision dilatometer (a longin.measuring device). Calculate the resulting imdimensions if the crystal is subjected to a 33-kN arigcompression load.arrow_forwardA single crystal of silver is oriented so that the (111) slip plane is perpendicular to an applied stress of 50 MPa. List the slip systems composed of close-packed planes and directions that may be activated due to this applied stress.arrow_forward
- What is the change in the free energy of a pure metal atom moving from one grain to another? Please draw the schematical illustration of the free energy and elaborate your answerarrow_forwardOne slip system for the HCP crystal structure is {0001}. Sketch this plane along with the HCP atoms and identify 3 different slip directions within this plane.arrow_forwardOne slip system for the BCC crystal structure is {110} . Sketch this plane along with the BCC atoms and identify two different slip directions within this plane.arrow_forward
- pls give full solution writtenarrow_forwardb. Figure 2 shows another ball-and-stick model of a very small crystal of a- Polonium, but this crystal contains one edge dislocation. Answer the questions. Figure 2: If the edge dislocation moves by slip or glide by one unit of b from left to right, how many bonds will be broken to achieve this outcome? Answer: To move the dislocation from its current position (Fig. 2) to the far right (so that a small step of size b appears at the right-side face), how many bonds will be broken? Answer:arrow_forwardOne slip system for the HCP crystal structure is {0001}(1120). In a manner similar to Figure 7.6b, sketch a {0111}-type plane for the HCP structure and, using arrows, indicate three different (1120) slip directions within this plane. You may find Figure 3.9 helpful.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY