EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 53QTP
Same as Prob. 1.39, but ASTM no. versus grains/mm3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Draw two schematic graphs using pencil showing a typical stress-strain curve for aluminum. The first graph should show engineering stress vs engineering strain, and the second graph should show true stress vs true strain. Label the showing: (i) elastic modulus (ii) proportional limit (iii) yield stress (iv)yield strain (v) fracture stress (vi) fracture strain on each graph. You may showboth graphs on one plot. Explain the difference between engineering stress and true stress.
6.8 The stress axis in an FCC crystal makes angles of 31◦ and 62◦ with thenormal to the slip plane and with the slip direction, respectively. The appliedstress is 10 MN/m2.
1. What are the elastic modulus (E) and the Poisson's ratio () used to indicate?
2. Illustrate the differences between actual stress and engineered stress with strain, and also describe their underlying physical concepts.
3. If the engineering strain is 2% for a specific state of uniaxial stress, what is the real strain?
Please solve for all in full detail and step by step
Chapter 1 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 1 - What is the difference between an atom and a...Ch. 1 - Prob. 2RQCh. 1 - Prob. 3RQCh. 1 - Prob. 4RQCh. 1 - Define anisotropy. What is its significance?Ch. 1 - What effects does recrystallization have on the...Ch. 1 - What is strain hardening, and what effects does it...Ch. 1 - Explain what is meant by structure-sensitive and...Ch. 1 - Prob. 9RQCh. 1 - What influence does grain size have on the...
Ch. 1 - What is the relationship between the nucleation...Ch. 1 - What is a slip system, and what is its...Ch. 1 - Explain the difference between recovery and...Ch. 1 - What is hot shortness, and what is its...Ch. 1 - Explain the advantages and limitations of cold,...Ch. 1 - Describe what the orange peel effect is. Explain...Ch. 1 - Some metals, such as lead, do not become stronger...Ch. 1 - Describe the difference between preferred...Ch. 1 - Differentiate between stress relaxation and stress...Ch. 1 - What is twinning? How does it differ from slip?Ch. 1 - Prob. 21QLPCh. 1 - What is the significance of the fact that some...Ch. 1 - Is it possible for two pieces of the same metal to...Ch. 1 - Prob. 24QLPCh. 1 - A cold-worked piece of metal has been...Ch. 1 - What materials and structures can you think of...Ch. 1 - Two parts have been made of the same material, but...Ch. 1 - Do you think it might be important to know whether...Ch. 1 - Explain why the strength of a polycrystalline...Ch. 1 - Describe the technique you would use to reduce the...Ch. 1 - What is the significance of the fact that such...Ch. 1 - Prob. 32QLPCh. 1 - It has been noted that the more a metal has been...Ch. 1 - Is it possible to cold work a metal at...Ch. 1 - Comment on your observations regarding Fig. 1.14.Ch. 1 - Is it possible for a metal to be completely...Ch. 1 - Prob. 37QTPCh. 1 - Prob. 38QTPCh. 1 - Plot the data given in Table 1.1 in terms of...Ch. 1 - A strip of metal is reduced from 30 mm in...Ch. 1 - Prob. 41QTPCh. 1 - How many grains are there on the surface of the...Ch. 1 - Prob. 43QTPCh. 1 - Prob. 44QTPCh. 1 - Prob. 45QTPCh. 1 - A technician determines that the grain size of a...Ch. 1 - If the diameter of the aluminum atom is 0.28 nm,...Ch. 1 - The following data are obtained in tension tests...Ch. 1 - Prob. 50QTPCh. 1 - Prob. 51QTPCh. 1 - Prob. 52QTPCh. 1 - Same as Prob. 1.39, but ASTM no. versus...Ch. 1 - By stretching a thin strip of polished metal, as...Ch. 1 - Draw some analogies to mechanical fiberingfor...Ch. 1 - Draw some analogies to the phenomenon of hot...Ch. 1 - Take a deck of playing cards, place a rubber band...Ch. 1 - Give examples in which anisotropy is scale...Ch. 1 - The movement of an edge dislocation was described...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve this and show all of the work. I want to see all of the formulas with all the calculations for every step.arrow_forwardNeed help on this Qarrow_forward4. The average grain diameter for a brass material was measured as a function of time at T, which is tabulated below at two different times: Time (min) Grain Diameter (mm) 30 90 3.9 × 10-2 6.6 × 10-2 (a) What was the original grain diameter (using n=2)? (b) What grain diameter would you predict after time, t, at temperature, T? Use T = 650 °C; t = 150 min; n = 2 in the grain size equationarrow_forward
- This is a material applied to your mechanics. Please answer a question quickly and without delay and in a clear handarrow_forwardThe effect of temperature on the crystallization of a material is given below. Calculate the transformation rate (min-1) at 130°C . Round your result to 2 decimal place.arrow_forwardI need the answer as soon as possiblearrow_forward
- 2. A specimen of Mg have a rectangular cross-section of dimensions 3.2mm by 19.1mm is deformed by tension. Using the load-elongation data tabulated below, do the following: Plot the data as engineering stress (in MPa) VS. engineering strain. Determine the elastic modulus Determine the yield strength (using a 0.2% offset method) Determine the tensile strength of the material Compute the modulus of resilience Compute the ductility Load (N) Length(mm) 63.50 1380 63.53 2780 63.56 5630 63.62 7430 63.70 8140 63.75 9870 64.14 12,850 14,100 14,340 13,830 12,500 fracture 65.41 66.68 67.95 69.22 70.49arrow_forward3. A 30-cm long, 12-mm diameter carbon steel rod was subjected to 15,5 kN of tension. Calculate (a) the stress and strain in the rod, (b) the amount that it stretches, (c) its change in diameter, and (d) its stiffness (k=EA/L). (e) If the force was only 4.5 kN, by what amount would the rod have stretched?arrow_forward2. A tensile test is performed on a bar of Dural (an aluminium alloy) of diameter 15 mm. The bar yields under a load of 30 kN and reaches a maximum load of 46 kN. Estimate the tensile yield stress and tensile strength of Duralarrow_forward
- A copper specimen subjected to the Brinell Hardness Test using hardened steel ball indenter of diameter 12 mm and the indentation diameter 3.87 mm is measured using an optical magnifying lens with a ruler. Draw the Brinell Hardness Test setup neatly and determine the force applied on the specimen. Take Brinell Hardness Number for copper as 807. Calculate: 1-Surface Area of Indentation (in mm2) 2-Applied Force (in N)arrow_forwardDo it ASAParrow_forwardA 3-mm-long gold alloy wire intended to electricallybond a computer chip to its package has an initial diameter of30 μm. During testing, it is pulled axially with a load of 15grams-force. If the wire diameter decreases uniformly to29 μm, compute the following:a. The final length of the wire.b. The true stress and true strain at this load.c. The engineering stress and strain at this load.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY