Excursions in Modern Mathematics (9th Edition)
9th Edition
ISBN: 9780134468372
Author: Peter Tannenbaum
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 6E
To determine
To write:
The conventional preference schedule format for the given table.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The function f(x) is represented by the equation, f(x) = x³ + 8x² + x − 42.
Part A: Does f(x) have zeros located at -7, 2, -3? Explain without using technology and show all work.
Part B: Describe the end behavior of f(x) without using technology.
How does the graph of f(x) = (x − 9)4 – 3 compare to the parent function g(x) = x²?
Find the x-intercepts and the y-intercept of the graph of f(x) = (x − 5)(x − 2)(x − 1) without using technology. Show all work.
Chapter 1 Solutions
Excursions in Modern Mathematics (9th Edition)
Ch. 1 - Figure 1-8 shows the preference ballots for an...Ch. 1 - Figure 1-9 shows the preference ballots for an...Ch. 1 - An election is held to choose the Chair of the...Ch. 1 - The student body at Eureka High School is having...Ch. 1 - An election is held using the printed-names format...Ch. 1 - Prob. 6ECh. 1 - Prob. 7ECh. 1 - Table 1-30 shows a conventional preference...Ch. 1 - The Demublican Party is holding its annual...Ch. 1 - The Epicurean Society is holding its annual...
Ch. 1 - Table 1-31 shows the preference schedule for an...Ch. 1 - Table 1-32 shows the preference schedule for an...Ch. 1 - Table 1-33 shows the preference schedule for an...Ch. 1 - Table 1-34 shows the preference schedule for an...Ch. 1 - Table 1-35 shows the preference schedule for an...Ch. 1 - Table1-36 shows the preference schedule for an...Ch. 1 - Table 1-25 see Exercise 3 shows the preference...Ch. 1 - Table 1-26 see Exercise 4 shows the preference...Ch. 1 - Table 1-25 see Exercise 3 shows the preference...Ch. 1 - Table 1-26 see Exercise 4 shows the preference...Ch. 1 - Table 1-31see Exercise 11 shows the preference...Ch. 1 - Table 1-32 see Exercise 12 shows the preference...Ch. 1 - Table 1-33 see Exercise 13 shows the preference...Ch. 1 - Table 1-34 Number of voters 6 6 5 4 3 3 1st A B B...Ch. 1 - Table 1-35 Percent of voters 24 23 19 14 11 9 1st...Ch. 1 - Table 1-36 Percent of voters 25 21 15 12 10 9 8...Ch. 1 - The Heisman Award. Table 1-37 shows the results...Ch. 1 - The 2014 AL Cy Young Award. Table 1-38 shows the...Ch. 1 - An election was held using the conventional Borda...Ch. 1 - Imagine that in the voting for the American League...Ch. 1 - Table 1-31 see Exercise 11 shows the preference...Ch. 1 - Table 1-32 see Exercise 12 shows the preference...Ch. 1 - Table1-33 Number of voters 6 5 4 2 2 2 2 1st C A B...Ch. 1 - Table 1-34 See Exercise 14 shows the preference...Ch. 1 - Table1-39_ shows the preference schedule for an...Ch. 1 - Table1-40_ shows the preference schedule for an...Ch. 1 - Table 1-35 see Exercise 15 shows the preference...Ch. 1 - Table 1-36 see Exercise 16 shows the preference...Ch. 1 - Top-Two Instant-Runoff Voting. Exercises 39 and 40...Ch. 1 - Top-Two Instant-Runoff Voting. Exercises 39 and 40...Ch. 1 - Table 1-31 see Exercise 11 shows the preference...Ch. 1 - Table 1-32 See Exercise 12 shows the preference...Ch. 1 - Table 1-33 see Exercise 13 shows the preference...Ch. 1 - Table 1-34 see Exercise 14 shows the preference...Ch. 1 - Table 1-35 see Exercise 15 shows the preference...Ch. 1 - Table 1-36 see Exercise 16 shows the preference...Ch. 1 - Table 1-39 see Exercise 35 shows the preference...Ch. 1 - Table1-40 see Exercise36 shows the preference...Ch. 1 - An election with five candidates A, B. C, D, and E...Ch. 1 - An election with six candidates A, B, C, D, E, and...Ch. 1 - Use Table 1-41 to illustrate why the Borda count...Ch. 1 - Use Table 1-32 to illustrate why the...Ch. 1 - Use Table 1-42 to illustrate why the plurality...Ch. 1 - Use the Math Club election Example 1.10 to...Ch. 1 - Use Table 1-43 to illustrate why the...Ch. 1 - Explain why the method of pair wise comparisons...Ch. 1 - Prob. 57ECh. 1 - Explain why the plurality method satisfies the...Ch. 1 - Explain why the Borda count method satisfies the...Ch. 1 - Explain why the method of pairwise comparisons...Ch. 1 - Two-candidate elections. Explain why when there...Ch. 1 - Alternative version of the Borda count. The...Ch. 1 - Reverse Borda count. Another commonly used...Ch. 1 - The average ranking. The average ranking of a...Ch. 1 - The 2006 Associated Press college football poll....Ch. 1 - The Pareto criterion. The following fairness...Ch. 1 - The 2003-2004 NBA Rookie of the Year vote. Each...Ch. 1 - Top-two IRV is a variation of the...Ch. 1 - The Coombs method. This method is just like the...Ch. 1 - Bucklin voting. This method was used in the early...Ch. 1 - The 2016 NBA MVP vote. The National Basketball...Ch. 1 - The Condorcet loser criterion. If there is a...Ch. 1 - Consider the following fairness criterion: If a...Ch. 1 - Suppose that the following was proposed as a...Ch. 1 - Consider a modified Borda count where a...
Knowledge Booster
Similar questions
- In a volatile housing market, the overall value of a home can be modeled by V(x) = 415x² - 4600x + 200000, where V represents the value of the home and x represents each year after 2020. Part A: Find the vertex of V(x). Show all work. Part B: Interpret what the vertex means in terms of the value of the home.arrow_forwardShow all work to solve 3x² + 5x - 2 = 0.arrow_forwardTwo functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it. f(x) h(x) 21 5 4+ 3 f(x) = −2(x − 4)² +2 + -5 -4-3-2-1 1 2 3 4 5 -1 -2 -3 5arrow_forward
- The functions f(x) = (x + 1)² - 2 and g(x) = (x-2)² + 1 have been rewritten using the completing-the-square method. Apply your knowledge of functions in vertex form to determine if the vertex for each function is a minimum or a maximum and explain your reasoning.arrow_forwardTotal marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]arrow_forward5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]arrow_forward
- Total marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward
- 3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward13) Consider the checkerboard arrangement shown below. Assume that the red checker can move diagonally upward, one square at a time, on the white squares. It may not enter a square if occupied by another checker, but may jump over it. How many routes are there for the red checker to the top of the board?arrow_forwardFill in the blanks to describe squares. The square of a number is that number Question Blank 1 of 4 . The square of negative 12 is written as Question Blank 2 of 4 , but the opposite of the square of 12 is written as Question Blank 3 of 4 . 2 • 2 = 4. Another number that can be multiplied by itself to equal 4 is Question Blank 4 of 4 .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL