Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 67P
(a)
To determine
To Find: The mass per unit volume in
(b)
To determine
To Find: The radius of Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the average density of an atom is approximately 103 kg/m3. The nucleus of an atom has a radius about 10-5 times that of the entire atom, and contains nearly all the mass of the atom. What is the approximate density, in kilograms per cubic meter, of a nucleus?
Iron has a density of 7.87 g/cm3, and the mass of an iron atom is 9.27 * 10-26 kg. If the atoms are spherical and tightly packed, (a) what is the volume of an iron atom and (b) what is the distance between the centers of adjacent atoms?
The diameter of the spherical particle is (1.900x10^0) fm, and the mass is (2.51x10^-27) kg. Determine the
density of this particle in kg/m3.
Your numerical answer requires the correct number of significant digits.
Chapter 1 Solutions
Physics for Scientists and Engineers
Ch. 1 - Prob. 1PCh. 1 - Prob. 2PCh. 1 - Prob. 3PCh. 1 - Prob. 4PCh. 1 - Prob. 5PCh. 1 - Prob. 6PCh. 1 - Prob. 7PCh. 1 - Prob. 8PCh. 1 - Prob. 9PCh. 1 - Prob. 10P
Ch. 1 - Prob. 11PCh. 1 - Prob. 12PCh. 1 - Prob. 13PCh. 1 - Prob. 14PCh. 1 - Prob. 15PCh. 1 - Prob. 16PCh. 1 - Prob. 17PCh. 1 - Prob. 18PCh. 1 - Prob. 19PCh. 1 - Prob. 20PCh. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - Prob. 27PCh. 1 - Prob. 28PCh. 1 - Prob. 29PCh. 1 - Prob. 30PCh. 1 - Prob. 31PCh. 1 - Prob. 32PCh. 1 - Prob. 33PCh. 1 - Prob. 34PCh. 1 - Prob. 35PCh. 1 - Prob. 36PCh. 1 - Prob. 37PCh. 1 - Prob. 38PCh. 1 - Prob. 39PCh. 1 - Prob. 40PCh. 1 - Prob. 41PCh. 1 - Prob. 42PCh. 1 - Prob. 43PCh. 1 - Prob. 44PCh. 1 - Prob. 45PCh. 1 - Prob. 46PCh. 1 - Prob. 47PCh. 1 - Prob. 48PCh. 1 - Prob. 49PCh. 1 - Prob. 50PCh. 1 - Prob. 51PCh. 1 - Prob. 52PCh. 1 - Prob. 53PCh. 1 - Prob. 54PCh. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - Prob. 57PCh. 1 - Prob. 58PCh. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - Prob. 61PCh. 1 - Prob. 62PCh. 1 - Prob. 63PCh. 1 - Prob. 64PCh. 1 - Prob. 65PCh. 1 - Prob. 66PCh. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72PCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76PCh. 1 - Prob. 77PCh. 1 - Prob. 78P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One student uses a meterstick to measure the thickness of a textbook and obtains 4.3 cm 0.1 cm. Other students measure the thickness with vernier calipers and obtain four different measurements: (a) 4.32 cm 0.01 cm. (b) 4.31 cm 0.01 cm, (c) 4.24 cm 0.01 cm, and (d) 4.43 cm 0.01 cm. Which of these four measurements, if any, agree with that obtained by the first student?arrow_forwardA sidewalk is to be constructed around a swimming pool that measures (10.0 0.1) m by (17.0 0.1) m. If the sidewalk is to measure (1.00 0.01) m wide by (9.0 0.1) cm thick, what volume of concrete is needed and what is the approximate uncertainty of this volume?arrow_forwardIf the DNA strand in a molecule could be stretched out, it would have a length on the order of 2.0 m. What would this be in feet and inches?arrow_forward
- Figure P1.6 shows a frustum of a cone. Match each of the three expressions (a) (r1 + r2)[h2 + (r2 r1)2]1/2, (b) 2(r1 + r2), and (c) h(r12 + r1r2 + r22)/3 with the quantity it describes: (d) the total circumference of the flat circular faces, (e) the volume, or (f) the area of the curved surface. Figure P1.6arrow_forwardRoughly how many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human?arrow_forwardRoughly how many heartbeats are there in a lifetime?arrow_forward
- The Scope and Scale of Physics Find the order of magnitude of the following physical quantities. (a) The mass of Earth’s atmosphere: 5.11018kg : (b) The mass of the Moon’s atmosphere: 25,000kg ; (c) The mass of Earth’s hydrosphere: 1.41021kg : (d) The mass of Earth: 5.971024kg : (e) The mass of the Moon: 7.341022kg : (f) The Earth-Moon distance (semimajor axis): 3.84108m : (g) The mean Earth-Sun distance: 1.51011m : (h) The equatorial radius of Earth: 6.38106m : (i) The mass of an electron: 9.111031kg : (j) The mass of a proton: 1.671027kg : (k) The mass of the Sun: 1.991030kg .arrow_forwardA rod extending between x = 0 and x = 14.0 cm has uniform cross-sectional area A = 9.00 cm2. Its density increases steadily between its ends from 2.70 g/cm3 to 19.3 g/cm3. (a) Identify the constants B and C required in the expression = B + Cx to describe the variable density. (b) The mass of the rod is given by m=allmaterialdV=allxAdx=014.0cm(B+Cx)(9.00cm2)dx Carry out the integration to find the mass of the rod.arrow_forwardPerform the following arithmetic operations, keeping the correct number of significant figures in your answer. a. The product 56.2 0.154 b. The sum 9.8 + 43.4 + 124 c. The quotient 81.340/arrow_forward
- The density of the Earth can be expressed by the equation density = C{1.22 -(r/R)}, where R is the radius of the Earth and C is a constant. Find the expression for C in terms of total mass (M) and the radius (R)..arrow_forwardOne cubic centimeter (1.0 cm3) of water has a mass of 1.0 ✕ 10−3 kg. (a) Determine the mass of 1 m3 of water. kg?(b) Assuming biological substances are 100% water, estimate the mass of a (spherical) cell with a diameter of 1.0 µm. kg?(c) Assuming biological substances are 100% water, estimate the mass of a human kidney. Take a kidney to be roughly a sphere with a radius of 4 cm. kg?(d) Assuming biological substances are 100% water, estimate the mass of a fly. Take a fly to be roughly a cylinder 4 mm long and 2 mm in diameter. kg?arrow_forwardThe speed of light is 2.998 × 108 m/s. One light-year is the distance that light travels in one year. One Astronomical Unit (AU) is 1.50 × 108 km. (a) How many meters are in 1.0 light-year? (b) How many meters are in 1.000 light-year? (c) How many AU are in 1.00 light-year? (d) What is the speed of light in AU/h?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Components of a Vector (Part 1) | Unit Vectors | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=fwMUELxZ0Pw;License: Standard YouTube License, CC-BY
02 - Learn Unit Conversions, Metric System & Scientific Notation in Chemistry & Physics; Author: Math and Science;https://www.youtube.com/watch?v=W_SMypXo7tc;License: Standard Youtube License