Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 76P
(a)
To determine
To Write: The combination of L and g that have same dimension of time.
(b)
To determine
To Explain: The dependence of period
(c)
To determine
To write: The formula of period
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
b) The period of a pendulum is the time t it takes the pendulum to swing back and forth once. If the
only dimensional quantities that the period depends on are the gravitational acceleration, g, and the length
of the pendulum, l, in the formt= gbec, where b, and c are dimensionless constants. What must be the
values of b and c?
The period T of a simple pendulum is the amount of time required for it to undergo one complete oscillation. If the length of the pendulum is L� and the acceleration of gravity is gg, then T� is given by
T=2πLpgq
Find the powers p� and q� required for dimensional consistency.
Enter your answers numerically separated by a comma.
The period T of a simple pendulum is the amount of
time required for it to undergo one complete
oscillation. If the length of the pendulum is Land the
acceleration of gravity is g, then T is given by
Part A
T= 2nLPgª
Find the powers p and q required for dimensional consistency.
Enter your answers numerically separated by a comma.
nν ΑΣφ
p, q =
Submit
Request Answer
Chapter 1 Solutions
Physics for Scientists and Engineers
Ch. 1 - Prob. 1PCh. 1 - Prob. 2PCh. 1 - Prob. 3PCh. 1 - Prob. 4PCh. 1 - Prob. 5PCh. 1 - Prob. 6PCh. 1 - Prob. 7PCh. 1 - Prob. 8PCh. 1 - Prob. 9PCh. 1 - Prob. 10P
Ch. 1 - Prob. 11PCh. 1 - Prob. 12PCh. 1 - Prob. 13PCh. 1 - Prob. 14PCh. 1 - Prob. 15PCh. 1 - Prob. 16PCh. 1 - Prob. 17PCh. 1 - Prob. 18PCh. 1 - Prob. 19PCh. 1 - Prob. 20PCh. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - Prob. 27PCh. 1 - Prob. 28PCh. 1 - Prob. 29PCh. 1 - Prob. 30PCh. 1 - Prob. 31PCh. 1 - Prob. 32PCh. 1 - Prob. 33PCh. 1 - Prob. 34PCh. 1 - Prob. 35PCh. 1 - Prob. 36PCh. 1 - Prob. 37PCh. 1 - Prob. 38PCh. 1 - Prob. 39PCh. 1 - Prob. 40PCh. 1 - Prob. 41PCh. 1 - Prob. 42PCh. 1 - Prob. 43PCh. 1 - Prob. 44PCh. 1 - Prob. 45PCh. 1 - Prob. 46PCh. 1 - Prob. 47PCh. 1 - Prob. 48PCh. 1 - Prob. 49PCh. 1 - Prob. 50PCh. 1 - Prob. 51PCh. 1 - Prob. 52PCh. 1 - Prob. 53PCh. 1 - Prob. 54PCh. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - Prob. 57PCh. 1 - Prob. 58PCh. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - Prob. 61PCh. 1 - Prob. 62PCh. 1 - Prob. 63PCh. 1 - Prob. 64PCh. 1 - Prob. 65PCh. 1 - Prob. 66PCh. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72PCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76PCh. 1 - Prob. 77PCh. 1 - Prob. 78P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sidewalk is to be constructed around a swimming pool that measures (10.0 0.1) m by (17.0 0.1) m. If the sidewalk is to measure (1.00 0.01) m wide by (9.0 0.1) cm thick, what volume of concrete is needed and what is the approximate uncertainty of this volume?arrow_forwardRoughly how many heartbeats are there in a lifetime?arrow_forwardConsider the equation y=mt+b, where the dimension of y is length and the dimension of t is time, and mand bare constants. What are the dimensions and SI units of (a) mand (b) b ?arrow_forward
- Find the order of magnitude of the number of table-tennis balls that would fit into a typical-size room (without being crushed). 18. (a) Compute the order of magnitude of the mass of a bath-arrow_forwardConsider the physical quantities m,s,v,a, and t with dimensions [m]=M,[s]=L,[v]=LT1 and [a]=LT2 . Assuming each of the following equations is dimensionally consistent, find the dimension of the quantity on the left-hand side of the equation: (a)F=ma;(b)K=0.5mv2;(c)p=mv;(d)W=mas;(e)L=mvrarrow_forwardCheck Your Understanding Is the equation v=atdimensionally consistent? One further point thin needs to be mentioned is the effect of the operations of calculus on dimensions. We have seen that dimensions obey the rules of algebra, just like units, but what happens when we take the derivative of one physical quantity with respect to another or integrate a physical quantity over another? The derivative of a function is just the slope of the line tangent to its graph and slopes are ratios, so for physical quantities vand t , we hive that the dimension of the derivative of vwith respect to us just the ratio of the dimension of v over that of t : [dvdt]=[vt] . Similarly, since integrals are just sums of products, the dimension of the integral of vwith respect to t is simply the dimension of vtimes the dimension of t : [vdt]=[v][t] . By the same reasoning, analogous rules hold for the units of physical quantities derived from other quantities by integration or differentiation.arrow_forward
- State how many significant figures are proper In the results of the following calculations: (a) (106.7)(98.2)/(46.210)(1.01) ; (b) (18.7)2 ; (c) (1.601019)(3712)arrow_forwardIf you live in the United States, you probably know your height in feet and inches. In other countries, metric units are commonly used for measuring such quantities. First, find your height in inches. Then determine your height in a. centimetens and b. metersarrow_forwardFor a given speed limit, would the numerical value be greater in mi/h or in km/h?arrow_forward
- A surveyor measures the distance across a straight river by the following method (Fig. P3.7). Starting directly across from a tree on the opposite bank, she walks d = 100 m along the riverbank to establish a baseline. Then she sights across to the tree. The angle from her baseline to the tree is = 35.0. How wide is the river?arrow_forwardOne student uses a meterstick to measure the thickness of a textbook and obtains 4.3 cm 0.1 cm. Other students measure the thickness with vernier calipers and obtain four different measurements: (a) 4.32 cm 0.01 cm. (b) 4.31 cm 0.01 cm, (c) 4.24 cm 0.01 cm, and (d) 4.43 cm 0.01 cm. Which of these four measurements, if any, agree with that obtained by the first student?arrow_forwardThe purpose of this problem is to show the entire concept of dimensional consistency can be summarized but the old saying “You can’t add apples and oranges.” It you have studied power series expansions in a calculus course, you know the standard mathematical funstions such as trigonometric functions, logarithms, and exponential function can be expressed as infinite sums of the form where the an are dimensionless constants for all n = 0, 1, 2, … and x is the argument of the function. (If you have not studied power series in calculus yet, just trust us.) Use this fact to explain why the requirement that all terms in an equation have the same dimensions is sufficient as a definition of dimensional consistency. That is, it actually implies the arguments of standard mathematical funstions must be dimensional consistency. That is, it actually implies the arguments of standard mathematical functions must be dimensionless, so it is not really necessary to make this latter condition a separate requirement of the definition of dimensional consistency as we have done in this section.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Components of a Vector (Part 1) | Unit Vectors | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=fwMUELxZ0Pw;License: Standard YouTube License, CC-BY
02 - Learn Unit Conversions, Metric System & Scientific Notation in Chemistry & Physics; Author: Math and Science;https://www.youtube.com/watch?v=W_SMypXo7tc;License: Standard Youtube License