Concept explainers
Carefully read through the list of terminology we’ve used in this Unit. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. Hint: One word is used twice.
axis
bar graph
categorical frequency distribution
classes
commutative
complement
compound interest
coordinates
data
degrees
element
empirical probability
exponential growth
grouped frequency distribution
histogram
interest
intersection
like quantities
linear growth
lower limit
origin
perimeter
pie chart
plotting points
population
probability
raw data
rectangular
representative sample
roster method
sample
scale
scientific notation
set
simple interest
stem and leaf plot
theoretical probability
time-series data
time-series graph
union
universal set
upper limit
Venn diagram
well-defined
x axis
y axis
If one of the classes in a grouped frequency distribution was 100–119 pounds, we would call 100 the _______________ and 119 the _______________.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
PATHWAYS TO MATH (LL) GEN CMB W/ACCESS
- Mortgage Rates The following table is taken from the website of Freddie Mac. It shows rates for 30-year fixed-rate mortgages since 1970. y=Year r=Mortgagerate 1975 9.05 1980 13.74 1985 12.43 1990 10.13 1995 7.93 2000 8.05 2005 5.87 2010 4.69 2015 3.84 a. Explain in practical terms the meaning of r(2003). b. Use the table to estimate the value of r(2003).arrow_forwardStock Market The week of September 15, 2008 was one of the most volatile weeks ever for the US stock market. The closing numbers of the Dow Jones Industrial Average each day were: What was the overall change for the week? Was it positive or negative?arrow_forwardWhich of the following describes a bar graph? The y-axis should represent only categorical data. Data is arranged in the order of the range Equal space between consecutive bars The x-axis should represent only continuous data that is in terms of numbersarrow_forward
- Part 2. Refer to the Excel file Cereal data set to complete the following tasks. All results and explanations need to be reported within this Word document after each question. Make sure to use complete sentences when explaining your results. Your results should be formatted and edited. Data Set: Cereals The data set shows the name of different brands of cereals, the manufacturers, the total calories, proteins, sugar, fat, potassium, sodium, location of the shelf in the supermarket, etc. The amount of sugar, protein, etc., is measured in grams (g). Exercise 1: A. Construct a frequency distribution and a bar graph for the cereal manufactures (mfr). Include the relative frequencies. Edit and format the graph and include appropriate labels for the horizontal and vertical axes. Describe your findings in the context of the problem (Include which manufacturer produces the most cereals and least number of cereals in the cereal market). N = Nabisco, K = Kellog’s, Q = Quaker Oats…arrow_forwardSolve both plzzarrow_forwardWhich statement(s) are accurate in their description of frequency and two-way tables? Select all that apply. a Relative frequency must be expressed as a percent. b The ratio that describes how many times a specific event occurs divided by the total number of events is called the data ratio. c Frequency is the amount of times that a specific event has occurred. d A two-way table is a way to describe frequencies for two variables. The rows and columns in the table must display the same categories.arrow_forward
- Part 2: The graph below represents the relative frequency of heads that occur (number of heads divided by the total number of tosses) versus the number of times the coin was tossed for the first io00 tosses. The table shows these values, and in addition, the total number of heads for the 991st to 1000th tosses. Use this information to answer the questions below. Long Term Relative Frequency 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 100 200 300 400 500 600 700 800 900 1000 Number of Coin Flips Long Term Relative Frequency Number of 991 992 993 994 995 996 997 998 999 1000 Tosses Number of Heads 511 512 513 513 514 515 515 515 515 515 Relative Frequency of Heads 0.5156 0.5161 0.5166 0.5161 0.5166 0.5171 0.5165 0.516 0.5155 0.515 d) Since the coin is fair, on average, approximately half of the tosses should be heads. So when the coin is tossed 1000 times approximately 500 of the tosses should be heads. What is the actual number of heads for 1000 tosses as given by the chart? e) What is the…arrow_forwardPlease answer all open blanksarrow_forwardPart 2: The graph below represents the relative frequency of heads that occur (number of heads divided by the total number of tosses) versus the number of times the coin was tossed for the first 1o00 tosses. The table shows these values, and in addition, the total number of heads for the 991st to 1000th tosses. Use this information to answer the questions below. Long Term Relative Frequency 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 100 200 300 400 500 600 700 800 900 1000 Number of Coin Flips Long Term Relative Frequency Number of 991 992 993 994 995 996 997 998 999 1000 Tosses Number of Heads 511 512 513 513 514 515 515 515 515 515 Relative Frequency of Heads 0.5156 0.51610.5166 0.51610.5166 0.5171 0.5165 0.516 0.5155 0.515 a) What is the minimum relative frequency of the number of heads for the tosses between 991 and 1000? b) What is the maximum relative frequency of the number of heads for the tosses between 991 and 1000? c) What is the difference between the minimum relative frequency…arrow_forward
- Nonearrow_forwardPlease provide only part C Please do it in 30 minutesarrow_forwardFor the variables below, state whether they are independent, quasi-independent, or dependent variables in this situation. Briefly explain why. Gender Number Grad Frequencies How many women were in the class? Paste the frequency table that shows this data below. woman= 0, Man =1 Number Gender Exam 1 Exam 2 Exam 3 Homework Lab Number grade Letter grade Z-score Absolute z-score 1 0 61 94 76 94 87 82.4 B 0.18 0.18 2 0 99 97 90 100 89 95 A 1.38 1.38 3 0 64 76 69 88 87 76.8 C -0.36 0.36 4 0 77 82 86 98 94 87.4 B 0.66 0.66 5 0 70 89 81 93 97 86 B 0.52 0.52 6 0 67 62 65 60 90 68.8 D -1.13 1.13 7 0 87 83 81 85 68 80.8 B 0.02 0.02 8 0 74 88 65 49 90 73.2 C -0.71 0.71 9 0 91 97 87 81 94 90 A 0.90 0.90 10 0 94 87 77 90 67 83 B 0.23 0.23 11 0 47 72 54 59 63 59 F -2.07 2.07 12 0 81 64 78 84 73 76 C -0.44 0.44 13 0 87 90 81 93 80 86.2 B 0.54 0.54 14 0 96 100 84 97 84 92.2 A 1.12 1.12 15 0 80 76 90 85 85 83.2 B 0.25 0.25 16 0 64 51 69 74 78 67.2 D -1.28…arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning