Concept explainers
1.39 Make the following metric conversions:
(a)964 mLto L
(b)275 mm to cm
(c) 45.7 kg to g
(d) 475 cm to m
(e)21.64 cc to mL
(f) 3.29 L to cc
(g)0.044 L to mL
(h)711 g to kg
(1) 63.7 mL to cc
(j) 0.073 kg to mg
(k) 83.4 m to mm
(1) 361 mg to g
(a)
Interpretation:
The conversion of 96.4 mL to L should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from mL to L using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 96.4 mL to L:
(b)
Interpretation:
The conversion of 275 mm to cm should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from mm to cm using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 275 mm to cm,
(c)
Interpretation:
The conversion of 45.7 kg to g should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from kg to g using the conversion factor,
Answer to Problem 27P
Explanation of Solution
Converting 45.7 kg to g:
(d)
Interpretation:
The conversion of 475 cm to m should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from cm to m using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 475 cm to m:
(e)
Interpretation:
The conversion of 21.64 cc to mL should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted from cc to mL using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 21.6 cc to mL:
(f)
Interpretation:
The conversion of 3.29 L to cc should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted from L to cc using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 3.29 L to cc:
(g)
Interpretation:
The conversion of 0.044 L to mL should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 0.044 L to mL:
(h)
Interpretation:
The conversion of 711 g to kg should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from g to kg using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 711 g to kg:
(i)
Interpretation:
The conversion of 63.7 mL to cc should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Volume can be converted from mL to cc using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 63.7 mL to cc:
(j)
Interpretation:
The conversion of 0.073 kg to mg should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from kg to mg using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 0.073 kg to mg:
(k)
Interpretation:
The conversion of 83.4 m to mm should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Length can be converted from m to mm using the following conversion factor.
Answer to Problem 27P
Explanation of Solution
Converting 83.4 m to mm:
(i)
Interpretation:
The conversion of 361 mg to g should be determined.
Concept Introduction:
An arithmetical multiplier which is used for converting a quantity expressed in one unit into another equivalent set of units is said to be conversion factor.
Mass can be converted from mg to g using the conversion factor,
Answer to Problem 27P
Explanation of Solution
Converting 361 mg to g:
Want to see more full solutions like this?
Chapter 1 Solutions
EP INTRO.TO GENERAL,ORGANIC...-OWL ACCE
- Please correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forwardQuantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forward
- Quantum mechanics. In translational motion, the summation is replaced by an integral when evaluating the partition function. This is correct becausea) the spacing of the translational energy levels is very small compared to the product kTb) the spacing of the translational energy levels is comparable to the product kTc) the spacing of the translational energy levels is very large compared to the product kTarrow_forwardDon't used Ai solutionarrow_forwardPlease correct answer and don't used hand raiting don't used Ai solutionarrow_forward
- If the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardIf the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardLaser. Indicate the relationship between metastable state and stimulated emission.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY