The Cosmic Perspective (9th Edition)
9th Edition
ISBN: 9780134874364
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 27EAP
The total number of stars in the observable universe is roughly equivalent to (a) the number of grains of sand on all the beaches on Earth. (b) the number of grains of sand on Miami Beach. (c) infinity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If our universe is expanding, what are the implications for the separation between two stars within our galaxy?
A.
The two stars are moving farther apart.
B.
The two stars are moving closer together.
C.
The distance between the two stars is unaffected.
D.
The question is impossible to answer without more information.
By the term universe, astronomers mean:
The system of 200 to 400 billion stars, of which the sun is one.
The collection of several dozen galaxies, of which the Milky Way is one.
Everything that we can observe.
The realm inside the atom.
billion
.stars in the Milky Way
100 and 300 O
100 and 400 O
100 and 200 O
100 and 500 O
No one of the other options O
There are between
Chapter 1 Solutions
The Cosmic Perspective (9th Edition)
Ch. 1 - Prob. 1VSCCh. 1 - Prob. 2VSCCh. 1 - Prob. 3VSCCh. 1 - Prob. 4VSCCh. 1 - Prob. 1EAPCh. 1 - Define astronomical unit and light-year.Ch. 1 - Explain the statement “The farther away we look in...Ch. 1 - Prob. 4EAPCh. 1 - Prob. 5EAPCh. 1 - What do we mean when we say that the universe is...
Ch. 1 - In what sense are we “star stuff”?Ch. 1 - Use the cosmic calendar to describe how the human...Ch. 1 - Briefly explain Earth’s daily rotation and annual...Ch. 1 - Briefly describe our solar system’s location and...Ch. 1 - Prob. 11EAPCh. 1 - Prob. 12EAPCh. 1 - Prob. 13EAPCh. 1 - Does it Make Sense? Decide whether the statement...Ch. 1 - Prob. 15EAPCh. 1 - Prob. 16EAPCh. 1 - Prob. 17EAPCh. 1 - Prob. 18EAPCh. 1 - Prob. 19EAPCh. 1 - Prob. 20EAPCh. 1 - Prob. 21EAPCh. 1 - Prob. 22EAPCh. 1 - Which of the following correctly lists our ‘cosmic...Ch. 1 - An astronomical unit is (a) any planet’s average...Ch. 1 - The star Betelgeuse is about 600 light-years away....Ch. 1 - Prob. 26EAPCh. 1 - The total number of stars in the observable...Ch. 1 - Prob. 28EAPCh. 1 - Prob. 29EAPCh. 1 - Prob. 30EAPCh. 1 - Prob. 31EAPCh. 1 - Prob. 32EAPCh. 1 - Prob. 34EAPCh. 1 - Thinking About Scale. One key to success in...Ch. 1 - Prob. 36EAPCh. 1 - A Human Adventure. Astronomical discoveries...Ch. 1 - Prob. 38EAPCh. 1 - Prob. 39EAPCh. 1 - Prob. 40EAPCh. 1 - Prob. 41EAPCh. 1 - Prob. 42EAPCh. 1 - Prob. 43EAPCh. 1 - Prob. 44EAPCh. 1 - Prob. 45EAPCh. 1 - Spacecraft Communication. We use radio waves,...Ch. 1 - Prob. 47EAPCh. 1 - Prob. 48EAPCh. 1 - Prob. 49EAPCh. 1 - Driving Trips. Imagine that you could drive your...Ch. 1 - Faster Trip. Suppose you wanted to reach Alpha...Ch. 1 - Prob. 52EAPCh. 1 - Earth Rotation Speed. Mathematical Insight 1.3...Ch. 1 - Order of Magnitude Estimate. Mathematical Insight...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Try Now ... .... Listed below are some distances from Earth to other objects in the Milky Way galaxy. Convert each distance to light-years. (Each of these distances is less than one light-year. For an added challenge, convert each distance to light minutes or light seconds.) 1. The distance from Earth to the Moon is about 384,400 km. How many light-years is this? 2. The distance from Earth to Mars is about 784,000,000 km. How many light-years is this? 3. The distance from Earth to Pluto is about 5,750,000,000 km. How many light-years is this?arrow_forwardMeasure the length of the meter stick using your ruler. How many ‘rulers’ is equal to the length of the meter stick?arrow_forwardSuppose we look at two distant galaxies: Galaxy 1 is twice as far away as Galaxy 2. In this case, A. Galaxy 1 must be twice as big as Galaxy 2. B. we are seeing Galaxy 1 as it looked at an earlier time in the history of the universe than Galaxy 2. C. we are seeing Galaxy 1 as it looked at a later time in the history of the universe than Galaxy 2. D. Galaxy 2 must be twice as old as Galaxy 1.arrow_forward
- The light coming from stars is closer to red (long wavelength, low frequency) than we would expect. What does this imply? Your answer: the universe is expanding the universe is rotating the universe is shrinking the universe is staticarrow_forwardWhat happens when galaxies collide? A. Star collisions will be rare but the shapes of the galaxies will be largely distorted. B. The shapes of the galaxies will be largely distorted and many of the stars of one galaxy will collide with stars of the other galaxy. C. The shapes of the galaxies will be distorted and many stars will collide with stars of the other galaxy, as well as with other stars in the same galaxy. D. Star collisions will be rare and the two galaxies will just pass through each other without any changes. Is the answer A? Thank you!arrow_forwardThe Messier Catalog is a. a listing of all the stars within the Local Bubble b. a list of all the HII listings visible without a telescope c. a list of nebulae, star clusters, and galaxies that might be mistaken for a comet far from the sun d. a list of regions where dark clouds large numbers of molecules can be foundarrow_forward
- Which of the following objects would you expect to be lacking any stars older than 10 billion years? a. an open cluster about 400 light years from the sun O b. a globular cluster O c. The Andromeda Galaxy (the nearest spiral galaxy to the Milky way) O d. M87 (a very massive elliptical galaxy)arrow_forwardI attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer) I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY Could you please explain each step especially for the part that I got wrong for both A and B?arrow_forward1. A distant galaxy has an apparent magnitude of 10 and is 4,000 kpc away. What is its absolute magnitude? (Round your answer to at least one decimal place.) The difference in absolute magnitude between two objects viewed from the same distance is related to their fluxes by the flux-magnitude relation. FA/FB= 2.51(MB − MA) 2. How does the absolute magnitude of this galaxy compare to the Milky Way (M = −21)?arrow_forward
- Compare the values of the number of grains of sand in all earth’s beaches with the number of stars in the universe – which is greater? Number of sand grains Number of stars They are about the same.arrow_forwardThe disk of the Milky Way galaxy contains roughly 200 billion (1 billion = 109 ) stars. The disk is not solid, but rather is a volume about 100,000 light-years in diameter (1 ly = 9500 billion kilometers) and 1000 light-years in thickness. What is the number density of stars in the Milky Way galaxy disk, in units of stars per cubic light-year? How about in units of stars per cubic km?arrow_forwardAnother way of explaining a word is to enumerate the different parts of which it ismade: “X consists of Y and Z”. Define the following words in this way.Solar system, a telescope, galaxy, binary system, open clusterarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY