Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 23P

As described in Prob. 1.22, in addition to the downward force of gravity (weight) and drag, an object falling through a fluid is also subject to a buoyancy force that is proportional to the displaced volume. For example, for a sphere with diameter d ( m ) , the sphere's volume is V = π d 3 / 6 and its projected area is A = π d 2 / 4 . The buoyancy force can then be computed as F b = ρ V g . We neglected buoyancy in our derivation of Eq. (1.9) because it is relatively small for an object like a parachutist moving through air. However, for a more dense fluid like water, it becomes more prominent.

(a) Derive a differential equation in the same fashion as Eq. (1.9), but include the buoyancy force and represent the drag force as described in Prob. 1.21.

(b) Rewrite the differential equation from (a) for the special case of a sphere.

(c) Use the equation developed in (b) to compute the terminal velocity (i.e., for the steady-state case). Use the following parameter values for a sphere falling through water: sphere diameter = 1 cm, sphere density = 2700  kg/m 3 , water density = 1000  kg/m 3 , and C d = 0.47 .

(d) Use Euler's method with a step size of Δ t = 0.03125 s to numerically solve for the velocity from t = 0 to 0.25 s with an initial velocity of zero.

Blurred answer
Students have asked these similar questions
On a sunny day, your friend Issac was daydreaming under an apple tree. All of a sudden, an apple dropped from the tree and hit Issac's head. From there Issac had the idea that the apple was dragged down from the tree by a "force". He contemplated an equation to describe this "force": F = m*g Where F is the force exerted onto the apple (in unit N), m is the mass of the apple (in unit kg), and g is a fundamental constant of nature, Issac named it the gravitational constant. Issac was intrigued by this idea and he wanted to measure the gravitational constant. He designed a simple experiment to do this: 1. Collect 5 apples 2. Measure the mass of each of them and put them into a dataset M 3. Put each apple onto the tree branch, and let 4. Measure the force exerted on each apple F = it drop from the tree [6.9, 7.3, 9.8, 9.0, 10} = {0.7, 0.7, 0.9, 0.8, 1.0} Issac carefully prepared his dataset so that there is one-to-one correspondence between each element in M and F. (i.e., the 1st apple…
A seasoned parachutist went for a skydiving trip where he performed freefall before deploying the parachute. According to Newton's Second Law of Motion, there are two forcës acting on the body of the parachutist, the forces of gravity (F,) and drag force due to air resistance (Fa) as shown in Figure 1. Fa = -cv ITM EUTM FUTM * UTM TM Fg= -mg x(t) UTM UT UTM /IM LTM UTM UTM TUIM UTM F UT GROUND Figure 1: Force acting on body of free-fall where x(t) is the position of the parachutist from the ground at given time, t is the time of fall calculated from the start of jump, m is the parachutist's mass, g is the gravitational acceleration, v is the velocity of the fall and c is the drag coefficient. The equation for the velocity and the position is given by the equations below: EUTM PUT v(t) = mg -et/m – 1) (Eq. 1.1) x(t) = x(0) – Where x(0) = 3200 m, m = 79.8 kg, g = 9.81m/s² and c = 6.6 kg/s. It was established that the critical position to deploy the parachutes is at 762 m from the ground…
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spriny feet. The ball is started in motion from the equilibrium position with a downward velocity of 6 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second). Suppose that aftert seconds the ball is y feet below its rest position. Find y in terms of t. (Note that the positive direction is down.) Take as the gravitational acceleration 32 feet per second per second.

Chapter 1 Solutions

Numerical Methods for Engineers

Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Text book image
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
The surface area and volume of cone, cylinder, prism and pyramid; Author: AtHome Tuition;https://www.youtube.com/watch?v=SlaQmaJCOt8;License: Standard YouTube License, CC-BY