Concept explainers
In our example of the free-falling parachutist, weassumed that the acceleration due to gravity was a constant value. Although this is a decent approximation when we are examining falling objects near the surface of the earth, the gravitational force decreases as we move above sea level. A more general representation based on Newton's inverse square law of gravitational attraction can be written as
where
(a) In a fashion similar to the derivation of Eq. (1.9) use a force balance to derive a
(b) For the case where drag is negligible, use the chain rule to express the differential equation as a function of altitude rather than time. Recall that the chain rule is
(c) Use calculus to obtain the closed form solution where
(d) Use Euler's method to obtain a numerical solution from
(a)
The differential equation for velocity v if the gravitational force is not constant and is given by the function
Answer to Problem 12P
Solution:
The differential equation for velocity v is
Explanation of Solution
Given Information:
The function
Where,
Assume the upward velocity is positive. Therefore, the force balance is given as,
Here,
And,
And,
Thus, the force balance is,
Divide the both sides of the above equation by m,
Hence, the differential equation for the velocity is,
(b)
The differential equation of for velocity as a function of altitude if the differential equation for velocity as a function of time is,
Answer to Problem 12P
Solution:
The differential equation of
Explanation of Solution
Given Information:
The differential equation
The drag force is negligible.
And, the chain rule is given as,
Consider the chain rule,
Here,
Now, consider the equation,
Since, drag force is negligible. Therefore,
Thus, from the chain rule,
Hence, differential equation of velocity as a function of altitude x is
(c)
To calculate: The solution for the velocity by the use of calculus if the differential equation of velocity as a function of altitude x is
Answer to Problem 12P
Solution:
The solution for the velocity is,
Explanation of Solution
Given Information:
The differential equation
The initial condition, at
Formula used:
Integration formula,
Calculation:
Consider the differential equation,
Separate the variable as below,
Integrate both the sides of the above equation,
Now, for
Substitute the value of C in the equation
Hence, the solution for the velocity is
(d)
To calculate: The velocity from
Answer to Problem 12P
Solution:
The velocity from
x | v- Euler | v- analytical |
0 | 1500 | 1500 |
10000 | 1434.518 | 1433.216 |
20000 | 1366.261 | 1363.388 |
30000 | 1294.818 | 1290.023 |
40000 | 1219.669 | 1212.476 |
50000 | 1140.138 | 1129.885 |
60000 | 1055.324 | 1041.05 |
70000 | 963.9789 | 944.2077 |
80000 | 864.2883 | 836.5811 |
90000 | 753.4434 | 713.3028 |
100000 | 626.6846 | 564.2026 |
The velocity by the Euler’s method is approximately same as the analytical solution.
Explanation of Solution
Given Information:
The differential equation
Where,
The initial condition
Formula used:
Euler’s method for
Where, h is the step size.
Calculation:
Consider the differential equation,
Substitute
The iteration formula for Euler’s method with step size
From part (c), the analytical solution for the velocity is,
Substitute
Use excel to find all the iteration with step size
Step 1: Name the column A as x and go to column A2 and put 0 then go to column A3and write the formula as,
=A2+10000
Then, Press enter and drag the column up to the
Step 2: Now name the column B as v-Euler and go to column B2 and write 1500 and then go to the column B3 and write the formula as,
=B2+10000*(-398.56*10^12/((6.37*10^6+A2)^2*B2))
Step 3: Press enter and drag the column up to the
Step 4. Now name the column C as v-analytical and go to column C2 and write 1500 and then go to the column C3 and write the formula as,
=(-2*9.81*((6.37*10^6*A3)/(6.37*10^6+A3))+1500^2)^(1/2)
Step 5. Press enter and drag the column up to the
Thus, all the iterations are as shown below,
x | v- Euler | v- analytical |
0 | 1500 | 1500 |
10000 | 1434.518 | 1433.216 |
20000 | 1366.261 | 1363.388 |
30000 | 1294.818 | 1290.023 |
40000 | 1219.669 | 1212.476 |
50000 | 1140.138 | 1129.885 |
60000 | 1055.324 | 1041.05 |
70000 | 963.9789 | 944.2077 |
80000 | 864.2883 | 836.5811 |
90000 | 753.4434 | 713.3028 |
100000 | 626.6846 | 564.2026 |
To draw the graph of the above results, follow the steps as given below,
Step 6:Select the column A and column B. Then, go to the Insert and select the scatter (X, Y) from the chart.
Step 7: Select the column A and column C. Then, go to the Insert and select the scatter (X, Y) from the chart.
Step 8: Select one of the graphs and paste it on another graph to Merge the graphs.
The graph obtained is,
From the graph, it is observed that both the graphs of velocity by analytical method and by Euler’s method is approximately same.
Want to see more full solutions like this?
Chapter 1 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
Precalculus: Mathematics for Calculus (Standalone Book)
College Algebra (Collegiate Math)
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Elementary Statistics: Picturing the World (7th Edition)
A First Course in Probability (10th Edition)
- 8. Prove that two nonzero complex numbers z₁ and Z2 have the same moduli if and only if there are complex numbers c₁ and c₂ such that Z₁ = c₁C2 and Z2 = c1c2. Suggestion: Note that (i≤ exp (101+0) exp (01-02) and [see Exercise 2(b)] 2 02 Ꮎ - = = exp(i01) exp(101+0) exp (i 01 - 02 ) = exp(102). i 2 2arrow_forwardnumerical anaarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- If you use any chatgpt will downvote.arrow_forward1) Compute the inverse of the following matrix. 0 1 1 A = 5 1 -1 2-3 -3arrow_forward2) Consider the matrix M = [1 2 3 4 5 0 2 3 4 5 00345 0 0 0 4 5 0 0 0 0 5 Determine whether the following statements are True or False. A) M is invertible. B) If R5 and Mx = x, then x = 0. C) The last row of M² is [0 0 0 0 25]. D) M can be transformed into the 5 × 5 identity matrix by a sequence of elementary row operations. E) det (M) 120 =arrow_forward
- 3) Find an equation of the plane containing (0,0,0) and perpendicular to the line of intersection of the planes x + y + z = 3 and x y + z = 5. -arrow_forward1) In the xy-plane, what type of conic section is given by the equation - √√√(x − 1)² + (y − 1)² + √√√(x + 1)² + (y + 1)² : - = 3?arrow_forward3) Let V be the vector space of all functions f: RR. Prove that each W below is a subspace of V. A) W={f|f(1) = 0} B) W = {f|f(1) = ƒ(3)} C) W={ff(x) = − f(x)}arrow_forward
- Translate the angument into symbole from Then determine whether the argument is valid or Invalid. You may use a truth table of, it applicable compare the argument’s symbolic form to a standard valid or invalid form. pot out of bed. The morning I did not get out of bed This moring Mat woke up. (1) Cidt the icon to view tables of standard vald and braild forms of arguments. Let prepresent."The morning Must woke up "and let a represent “This morning I got out of bed.” Seled the cared choice below and II in the answer ber with the symbolic form of the argument (Type the terms of your expression in the same order as they appear in the original expression) A. The argument is valid In symbolic form the argument is $\square $ B. The angunent is braid In symbolic form the argument is $\square $arrow_forwardWrite the prime factorization of 8. Use exponents when appropriate and order the factors from least to greatest (for example, 22.3.5). Submitarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer Plzarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage