Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
- a. A function could have the property that f(−x) = f(x), for all x.
- b. cos (a + b) = cos a + cos b, for all a and b in [0, 2π].
- c. If f is a linear function of the form f(x) = mx + b, then f(u + v) = f(u) + f(v), for all u and v.
- d. The function f(x) = 1 − x has the property that f(f(x)) = x.
- e. The set {x: |x + 3| > 4} can be drawn on the number line without lifting your pencil.
- f. log10(xy) = (log10 x)(log10 y)
- g. sin−1 (sin (2π)) = 0
a.
Whether the given statement is true or not and give an explanation or a counter example.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
Given:
A function could have a property that
Consider the function
Then,
Therefore, the statement is true.
b.
Whether the given statement is true or not and give an explanation or a counter example.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given:
The identity
Calculation:
Take
Then,
And,
That is,
Therefore, the statement is false.
c.
Whether the given statement is true and give an explanation or a counter example.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given:
If
Calculation:
Take
That is,
The right hand side of equation
And, the left hand side of equation
Thus,
Therefore, the statement is false.
d.
Whether the given statement is true or not and give an explanation or a counter example.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
Given:
The function
Calculation:
Consider the function
Then,
Therefore, the statement is true.
e.
Whether the given statement is true or not and give an explanation or a counter example.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given:
The set
Calculation:
The given set
Therefore, the set
Therefore, the statement is false.
f.
Whether the given statement is true or not and give an explanation or a counter example.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given:
The equation,
Calculation:
Take,
Then,
and,
Then,
Therefore, the statement is false.
g.
Whether the given statement is true or not and give an explanation or a counter example.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
Given:
The equation,
Consider
Then, compute the following.
Thus,
Therefore, the statement is true.
Want to see more full solutions like this?
Chapter 1 Solutions
Single Variable Calculus Format: Unbound (saleable)
- The correct answer is C,i know that we need to use stokes theorem and parametrize the equations then write the equation F with respect to the curve but i cant seem to find a way to do it, the integral should be from 0 to 2pi but i might be wrongcould you show me the steps to get to 18piarrow_forwardA 10-ft boom is acted upon by the 810-lb force as shown in the figure. D 6 ft 6 ft E B 7 ft C 6 ft 4 ft W Determine the tension in each cable and the reaction at the ball-and-socket joint at A. The tension in cable BD is lb. The tension in cable BE is lb. The reaction at A is ( lb) i + Ib) j. (Include a minus sign if necessary.)arrow_forwardthe correct answer is A could you show me whyarrow_forward
- Good Day, Kindly assist me with this query.arrow_forwardon donne f(x) da fonction derive dhe do fonction fcsos calcule f'(x) orans chacun des Cas sulants: 3 1) f(x)=5x-11, 2- f (x) = ->³ 3-1(x) = x² 12x +π; 4-f(x)=- 5-f(x) = 33-4x6-609)=-3x²+ 7= f(x) = x + 1.8-f(x) = 4 s-f(x) = x++ X+1 -x-1 2 I 3x-4 девоarrow_forwardThe correct answer is Ccould you show me how to do it by finding a0 and and akas well as setting up the piecewise function and integratingarrow_forward
- T 1 7. Fill in the blanks to write the calculus problem that would result in the following integral (do not evaluate the interval). Draw a graph representing the problem. So π/2 2 2πxcosx dx Find the volume of the solid obtained when the region under the curve on the interval is rotated about the axis.arrow_forward38,189 5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x| ≤ and the curve y y = about the line x = =플 2 80 F3 a FEB 9 2 7 0 MacBook Air 3 2 stv DGarrow_forwardFind f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x. h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1 - - - f(x) = ☐arrow_forward
- x-4 Let f(x)=5x-1, h(x) = Find (fo h)(0). 3 (fo h)(0) = (Type an integer or a fraction.)arrow_forwardFill in the blanks to write the calculus problem that would result in the following integral (do not evaluate the interval). Draw a graph representing the problem. π/2 So/² 2xcosx dx Find the volume of the solid obtained when the region under the curve 38,189 on the interval is rotated about the axis.arrow_forwardLet f(x) = -5x-1, g(x) = x² + 5, h(x) = · x+4 3 Find (hog of)(1). (hogof)(1)= (Simplify your answer. Type an integer or a decimal.)arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning