
Concept explainers
Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book.
The Principle of Molecular Recognition Through Structural Complementarity

To explain:
How proteins interact with various biomolecules through molecular surfaces which are structurally complementary.
Introduction:
Proteins are made up of amino acids. Diversity of these amino acids is the key feature that enable proteins to interact with other biomolecules with various kinds of characteristics. Some amino acids are nonpolar (alanine, cysteine, glycine, isoleucine, leucine); they are very important in forming hydrophobic interactions. There are polar amino acids (serine, threonine, cysteine, asparagine, glutamine, and tyrosine); they involve in dipole-dipole interactions and H bonding. These polar amino acids are very important in forming interactions with polar carbohydrates. There are charged amino acids depending on the physiochemical pH value.
Explanation of Solution
Structural features that are formed as a result of diversity of the building blocks (amino acid) of proteins enable them to form interactions with various kinds of chemical species. For an example lysine and arginine (+ charge), aspartate and glutamate (- charge) can get charged based on the pH value of the medium. Thus, they can interact with charged species. Nucleic acids consist of pentose sugars, phosphate groups and nitrogenous bases. In general, nucleic acids interact with proteins forming various deferent interactions that includes hydrogen bonding, electrostatic interactions as well as dipole-dipole interactions.
When a protein is made up with the incorporation of various amino acids, they provide unique structural properties for the protein. Thus, they can interact with various biomolecules through these structural features.
Want to see more full solutions like this?
Chapter 1 Solutions
Biochemistry
- Draw both cis and trans oleic acid. Explain why cis-oleic acid has a melting point of 13.4°C and trans-oleic acid has a melting point of 44.5°C.arrow_forwardDraw the full structure of the mixed triacylglycerol formed by the reaction of glycerol and the fatty acids arachidic, lauric and trans-palmitoleic. Draw the line structure.arrow_forwardDraw out the structure for lycopene and label each isoprene unit. "Where is lycopene found in nature and what health benefits does it provide?arrow_forward
- What does it mean to be an essential fatty acid? What are the essential fatty acids?arrow_forwardCompare and contrast primary and secondary active transport mechanisms in terms of energy utilisation and efficiency. Provide examples of each and discuss their physiological significance in maintaining ionic balance and nutrient uptake. Rubric Understanding the key concepts (clearly and accurately explains primary and secondary active transport mechanisms, showing a deep understanding of their roles) Energy utilisation analysis ( thoroughly compares energy utilisation in primary and secondary transport with specific and relevant examples Efficiency discussion Use of examples (provides relevant and accurate examples (e.g sodium potassium pump, SGLT1) with clear links to physiological significance. Clarity and structure (presents ideas logically and cohesively with clear organisation and smooth transition between sections)arrow_forward9. Which one of the compounds below is the major organic product obtained from the following reaction sequence, starting with ethyl acetoacetate? 요요. 1. NaOCH2CH3 CH3CH2OH 1. NaOH, H₂O 2. H3O+ 3. A OCH2CH3 2. ethyl acetoacetate ii A 3. H3O+ OH B C D Earrow_forward
- 7. Only one of the following ketones cannot be made via an acetoacetic ester synthesis. Which one is it? Ph کہ A B C D Earrow_forward2. Which one is the major organic product obtained from the following reaction sequence? HO A OH 1. NaOEt, EtOH 1. LiAlH4 EtO OEt 2. H3O+ 2. H3O+ OH B OH OH C -OH HO -OH OH D E .CO₂Etarrow_forwardwhat is a protein that contains a b-sheet and how does the secondary structure contributes to the overall function of the protein.arrow_forward
- draw and annotate a b-sheet and lable the hydrogen bonding. what is an example that contains the b-sheet and how the secondary structure contributes to the overall function of your example protein.arrow_forwardFour distinct classes of interactions (inter and intramolecular forces) contribute to a protein's tertiary and quaternary structures. Name the interaction then describe the amino acids that can form this type of interaction. Draw and annotate a diagram of the interaction between two amino acids.arrow_forwardExamine the metabolic pathway. The enzymes that catalyze each step are identified as "e" with a numeric subscript. e₁ e3 e4 A B с 1° B' 02 e5 e6 e7 E F Which enzymes catalyze irreversible reactions? ப e ez ☐ ez e4 ☐ ப es 26 5 e7 Which of the enzymes is likely to be the allosteric enzyme that controls the synthesis of G? €2 ез e4 es 26 5 e7arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
