
Answer each question yes or no. Must two quantities have the same dimensions (a) if you are adding them? (b) If you are multiplying them? (c) If you are subtracting them? (d) If you are dividing them? (e) If you are equating them?
(a)

The equivalence in dimensionality upon addition
Answer to Problem 1OQ
Yes.
Explanation of Solution
For the four basic operations that is addition, subtraction, multiplication, and division will have different conditions to for performing these operations under the conditions of dimensions.
Considering each operations separately in the case of addition or subtraction, the dimensions of the quantities must have the same units or dimensions whereas for multiplication and division, the dimensions of the quantities need not be of same units or dimensions.
Conclusion
For example, in the case of addition, one cannot add
(b)

The equivalence in dimensionality upon multiplication
Answer to Problem 1OQ
No.
Explanation of Solution
The dimensions of the quantities need not be of same units or dimensions for operations such as multiplication.
Take an example, to obtain the area of a rectangle of dimension
Conclusion
Option (b) is no; that is there is no need of the quantities to have the same dimensions.
(c)

The equivalence in dimensionality upon subtraction.
Answer to Problem 1OQ
Yes.
Explanation of Solution
The dimensions of the quantities should have same units or dimensions for subtraction.
For example, in the case of subtraction, one cannot subtract
Conclusion
Option (c) is yes; because the quantities must have the same dimensions.
(d)

The equivalence in dimensionality upon division.
Answer to Problem 1OQ
No.
Explanation of Solution
There is no need of the quantities to have same dimensions to operate the division operation.
Take an example, to obtain the density of a system whose mass is
Conclusion
Option (d) is no, that is there is no need of the quantities to have the same dimensions
(e)

The equivalence in dimensionality upon equating two quantities.
Answer to Problem 1OQ
Yes.
Explanation of Solution
For equating two quantities, the dimensions have to be same because what is in one side should be the same on the other side.
Take an example, to equate the velocity of a system, the distance and the time should the same dimension that of velocity that is,
Conclusion
Option (e) is also yes because the quantities should have same dimension to equate.
Want to see more full solutions like this?
Chapter 1 Solutions
Principles of Physics: A Calculus-Based Text
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





