(a)
Interpretation:
The notation for the valence shell configuration (including outermost d-electrons) of alkali metals has to be given.
Concept Introduction:
Electronic configuration: The electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals.
Electrons occupy the lowest energy orbitals. The increasing order of orbital energy is
The energy order of the orbital for the first three periods is as follows,
The orbital which is closer to the nucleus has lower energy; therefore the
In general, the orbitals can hold maximum of two electrons, the two electrons must have opposite spin.
The subshell ordering by Aufbau principle is given below,
(b)
Interpretation:
The notation for the valence shell configuration (including outermost d-electrons) of group
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The notation for the valence shell configuration (including outermost d-electrons) of group
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The notation for the valence shell configuration (including outermost d-electrons) of coinage metals (copper, silver, gold) has to be given.
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
- A nonmetallic element, R, burns brightly in air to give the oxide R4O10. If R is in Period 3, what is the ground-state valence-shell configuration of the atom?arrow_forwardDoes the information on alkali metals in Table 2-8 of the text confirm the general periodic trends in ionization energy and atomic radius? Explain.arrow_forwardWhich is higher in energy, the 2s or 2p orbital, in hydrogen? Is this also true for helium? Explain.arrow_forward
- • identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardLook up the van der Waals constants, b, for H2, N2, O2, and Cl2. Based on the periodic table, predict atomic radii for H, N, O, and Cl. Use these values to explain the sizes of the b constants.arrow_forward(a) How many subshells are present in the n = 4 shell? (b) How many orbitals are in the 3d subshell? (c) What is the maximum value of that is allowed in the shell with n = 3? (d) What are the values of n and for a 3p subshell? Give all allowed values of the m quantum number for this subshell.arrow_forward
- Give the ground-state electron configurations of the following elements: (a) P (b) Tc (c) Hoarrow_forward(a) Describe the trends of atomic size and ionization energy, respectively, in the Periodic Table: (1) from left to right across a period, and (ii) from top to bottom down a group. (b) Rank the following elements: Na, Mg, Al, and K, in increasing order of: (i) atomic size; (ii) ionization energy, and (iii) reactivity. (c) Rank the following elements: F, CI, Br and I, in increasing order of: (i) atomic size; (ii) electron affinity, (iii) electronegativity, and (iv) reactivity.arrow_forward(a) Rank elements: Na, Mg, Al, and K, in increasing order of: (i) atomic size; (ii) ionization energy, and (iii) reactivity. (b) Explain why atomic size decreases from left to right, but increases from top to bottom; (c) Explain why ionization energy increases from left to right, but decreases from top to bottom; (d) Explain why the reactivity of alkali metals (Group-1) increases from top to bottom, where as the reactivity of halogen (Group-17) decreases from top to bottom.arrow_forward
- (a) Predict the atomic number of the (as yet undiscovered) alkali-metal element in the eighth period. (b) Suppose the eighth-period alkali-metal atom turned out to have atomic number 137. What explanation would you give for such a high atomic number (recall that the atomic number of francium is only 87)?arrow_forward(i) Write the equation that represents the first electron affinity of Selenium (Se). (ii) Do you expect this process to be exothermic or endothermic? Explain your answer.arrow_forward(a) How does the Bohr model differ from the quantum mechanical model of the atom? Describe at least 2 differences.(b) Define each of the 4 quantum numbers (n, l, ml, ms) and what they physically represent about the orbital and/or electron.(d) How many quantum numbers are needed to completely define a specific orbital? Provide the quantum numbers for the 2s orbital.(d) How many quantum numbers are needed to completely define a specific electron? Provide the quantum numbers for the second electron to fill into a 2s orbital.arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning