Concept explainers
(a)
Interpretation:
The type of orbital of ground state germanium atom from which an electron will be removed to form
Concept Introduction:
Electronic configuration: The electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals.
Electrons occupy the lowest energy orbitals. The increasing order of orbital energy is
The energy order of the orbital for the first three periods is as follows,
The orbital which is closer to the nucleus has lower energy; therefore the
In general, the orbitals can hold maximum of two electrons, the two electrons must have opposite spin.
The subshell ordering by Aufbau principle is given below,
(b)
Interpretation:
The type of orbital of ground state manganese atom from which an electron will be removed to form
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The type of orbital of ground state barium atom from which an electron will be removed to form
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The type of orbital of ground state gold atom from which an electron will be removed to form
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
- When a nonmetal oxide reacts with water, it forms anoxoacid with the same nonmetal oxidation state. Give the name and formula of the oxide used to prepare each of these oxoacids:(a) hypochlorous acid; (b) chlorous acid; (c) chloric acid; (d) perchloric acid; (e) sulfuric acid; (f ) sulfurous acid; (g) nitricacid; (h) nitrous acid; (i) carbonic acid; ( j) phosphoric acid.arrow_forwardjust part Darrow_forwardDetermine the number of valence electrons and give the electronic confi guration of the valence electrons of each element: (a) nitrogen; (b) potassium.arrow_forward
- (a) Use orbital diagrams to illustrate what happens when anoxygen atom gains two electrons. (b) Why does O3 - not exist?arrow_forwardDetermine the number of valence electrons and give the electronic confi guration of the valence electrons of each element: (a) fl uorine; (b) krypton; (c) magnesium; (d) germanium.arrow_forward7. Use an orbital diagram to describe the electron configuration of the valence shell of each of the following atoms: (a) N (b) Si (c) Fearrow_forward
- Na +, K +, Ca 2 +, and Mg 2 + are the four major cations in the body. For each cation, give the following information: (a) the number of protons; (b) the number of electrons; (c) the noble gas that has the same electronic confi guration; (d) its role in the body.arrow_forward7. Which element has the smallest first ionization energy? (a) Cs (b) Ga (c) K (d) Bi (e) As 8. Which element has the smallest second ionization energy? (a) Mg (b) Li (c) S (d) O (e) Ca 9. Which of the following sets contain all linear molecules? (a) H2S, HCN, CO2. (b) HCN, O2, CO2 (c) H2O, CO, Cl2. (d) H2S, CO, CO2. (e) BF3, Cl2, O2 10. The molecular geometry of SnCl3-ion is: (a) trigonal planar (b) T-shaped. (c) trigonal pyramidal. (d) Tetrahedral (e) see-saw 11. The geometry of the molecule SPC13 is best described as: (a) square planar (b) trigonal pyramidal (c) trigonal bipyramidal. (d) octahedral (e) tetrahedral 12. The O-S-Cl bond angles in O2SCl2 are expected to be approximately: (a) 90° (b) 109.5° (c) 120° (d)180 ° (e) 90° and 120°arrow_forwardWrite the electron configurations for (a) Ca2+, (b) Co3+, and (c) S2-.arrow_forward
- 5) (a) Arrange the following substances in the order in which you would expect their boiling points to increase: CCI4, Cl, CINO, N,. Explain your answer. (b) Write the condensed electron configuration of mercury (Hg) and an orbital diagram for the electron configuration of tin (Sn).arrow_forward3.arrow_forwardQ1. This question is about atomic structure. (a) Write the full electron configuration for each of the following species. CH Fe2+ (b) Write an equation, including state symbols, to represent the process that occurs when the third ionisation energy of manganese is measured. (c) State which of the elements magnesium and aluminium has the lower first ionisation energy Explain your answer. (d) A sample of nickel was analysed in a time of flight (TOF) mass spectrometer. The sample was ionised by electron impact ionisation. The spectrum produced showed three peaks with abundances as set out in the table. m/z Abundance /% 58 61.0 60 29.1 61 9.9 Give the symbol, including mass number, of the ion that would reach the detector first in the sample. Calculate the relative atomic mass of the nickel in the sample. Give your answer to one decimal place. Page 2 of 12 Symbol of ion Relative atomic massarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning