DATA You are a mechanical engineer working for a manufacturing company. Two forces, F → 1 and F → 2 , act on a component part of a piece of equipment. Your boss asked you to find the magnitude of the larger of these two forces. You can vary the angle between F → and F → from 0° to 90° while the magnitude of each force stays constant. And. you can measure the magnitude of the resultant force they produce (their vector sum), but you cannot directly measure the magnitude of each separate force. You measure the magnitude of the resultant force for four angles θ between the directions of the two forces as follows: (a) What is the magnitude of the larger of the two forces? (b) When the equipment is used on the production line, the angle between the two forces is 30.0°. What is the magnitude of the resultant force in this case?
DATA You are a mechanical engineer working for a manufacturing company. Two forces, F → 1 and F → 2 , act on a component part of a piece of equipment. Your boss asked you to find the magnitude of the larger of these two forces. You can vary the angle between F → and F → from 0° to 90° while the magnitude of each force stays constant. And. you can measure the magnitude of the resultant force they produce (their vector sum), but you cannot directly measure the magnitude of each separate force. You measure the magnitude of the resultant force for four angles θ between the directions of the two forces as follows: (a) What is the magnitude of the larger of the two forces? (b) When the equipment is used on the production line, the angle between the two forces is 30.0°. What is the magnitude of the resultant force in this case?
DATA You are a mechanical engineer working for a manufacturing company. Two forces,
F
→
1
and
F
→
2
, act on a component part of a piece of equipment. Your boss asked you to find the magnitude of the larger of these two forces. You can vary the angle between
F
→
and
F
→
from 0° to 90° while the magnitude of each force stays constant. And. you can measure the magnitude of the resultant force they produce (their vector sum), but you cannot directly measure the magnitude of each separate force. You measure the magnitude of the resultant force for four angles θ between the directions of the two forces as follows:
(a) What is the magnitude of the larger of the two forces?
(b) When the equipment is used on the production line, the angle between the two forces is 30.0°. What is the magnitude of the resultant force in this case?
2.62 Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on the
same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the
same direction as the passenger train. The engineer of the passenger
train immediately applies the brakes, causing a constant acceleration
of 0.100 m/s² in a direction opposite to the train's velocity, while the
freight train continues with constant speed. Take x = 0 at the location
of the front of the passenger train when the engineer applies the brakes.
(a) Will the cows nearby witness a collision? (b) If so, where will it take
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
Chapter 1 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.