
Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
9th Edition
ISBN: 9781337594318
Author: Barry J. Goodno; James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.8.5P
The Force in the brake cable of the V-brake system shown in the figure is T — 45 lb. The pivot pin at A has a diameter d. = 0.25 in. and length L„ = 5/S in. Use the dimensions shown in the figure. Neglect the weight of the brake system.
(a) Find the average shear stress rjm in the pivot pin where it is anchored to the bicycle frame at B.
(b) Find the average bearing stress raverin the pivot pin over segment AB.
(a) Find support reactions at A and B.
(b) Find the resultant force in the shoe boll at A.
(c) Find maximum average shear T and bearing AB stresses in the shoe bolt at A.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
In (Figure 1), take m₁ = 4 kg and mB = 4.6 kg.
Determine the z component of the angular momentum Ho of particle A about point O.
Determine the z component of the angular momentum Ho of particle B about point O. Suppose that
5 m
8 m/s
4 m
1.5 m
4 m
B
MB
1 m
2 m
5
30°
6 m/s
MA
The two disks A and B have a mass of 4 kg and 6 kg,
respectively. They collide with the initial velocities shown. The
coefficient of restitution is e = 0.75. Suppose that
(VA)1 = 6 m/s, (VB)₁ = 7 m/s. (Figure 1)
Determine the magnitude of the velocity of A just after impact.
Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis.
Determine the magnitude of the velocity of B just after impact.
Determine the angle between the x axis and the velocity of B just after impact, measured clockwise from the positive x axis.
(VB)1
B
(VA)1
60°
Line of impact
A hot plane surface is maintained at 100°C, and it is exposed to air at 25°C.The combined heat transfer coefficient between the surface and the air is 25W/m²·K. (same as above). In this task, you are asked to design fins to cool asurface by attaching 3 cm-long, 0.25 cm-diameter aluminum pin fins (thermalconductivity, k = 237 W/m·K) with a center-to-center distance of 0.6 cm. (Tip:do not correct the length). Determine the rate of heat transfer from thefinned structure to the air for a 1 m x 1 m section of the plate.
Chapter 1 Solutions
Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Segments AB and BC of beam ABC are pin connected a...Ch. 1 - Segments A B and BCD of beam A BCD are pin...Ch. 1 - Segments AB and BCD of beam ABCD are pin connected...Ch. 1 - Consider the plane truss with a pin support at...Ch. 1 - A plane truss has a pin support at A and a roller...Ch. 1 - A plane truss has a pin support at F and a roller...Ch. 1 - Find support reactions at A and B and then use the...Ch. 1 - Find support reactions at 4 and Band then use the...
Ch. 1 - Repeat 1.3-9 but use the method of sections go...Ch. 1 - Repeat 1.3-10 but use the method of sections to...Ch. 1 - A space truss has three-dimensional pin supports...Ch. 1 - A space truss is restrained at joints O, A. B. and...Ch. 1 - 1.3-15 A space truss is restrained at joints A, B,...Ch. 1 - A space truss is restrained at joints A, B. and C,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A plane frame is restrained al joints A and C, as...Ch. 1 - A plane Frame is restrained at joints A and D, as...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - ,3-23 A 200-lb trap door (AD) is supported by a...Ch. 1 - A plane frame is constructed by using a pin...Ch. 1 - A plane Frame with pin supports at A and E has a...Ch. 1 - A plane frame with a pin support at A and roller...Ch. 1 - A 150-lb rigid bar AB. with friction less rollers...Ch. 1 - A plane frame has a pin support at A and roller...Ch. 1 - A special vehicle brake is clamped at O when the...Ch. 1 - Space frame A BCD is clamped at A, except it is...Ch. 1 - Space Frame ABC is clamped at A, except it is free...Ch. 1 - A soccer goal is subjected to gravity loads (in...Ch. 1 - An elliptical exerciser machine (see figure part...Ch. 1 - A mountain bike is moving along a flat path at...Ch. 1 - A hollow circular post ABC (see figure) supports a...Ch. 1 - A circular nylon pipe supports a downward load PA=...Ch. 1 - A circular tube AB is fixed at one end and free at...Ch. 1 - A force P of 70 N is applied by a rider to the...Ch. 1 - A bicycle rider wants to compare the effectiveness...Ch. 1 - A circular aluminum tube with a length of L = 420...Ch. 1 - The cross section of a concrete corner column that...Ch. 1 - A car weighing 130 kN when fully loaded is pulled...Ch. 1 - Two steel wines support a moveable overhead camera...Ch. 1 - A long re Lai nine: wall is braced by wood shores...Ch. 1 - A pickup truck tailgate supports a crate where Wc=...Ch. 1 - Solve the preceding problem if the mass of the...Ch. 1 - An L-shaped reinforced concrete slab 12 Ft X 12...Ch. 1 - A crane boom of mass 450 leg with its center of...Ch. 1 - Two gondolas on a ski lift are locked in the...Ch. 1 - A round bar ABC of length 2L (see figure) rotates...Ch. 1 - Two separate cables AC and BC support a sign...Ch. 1 - Imagine that a long steel wire hangs vertically...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - Three different materials, designated A, B. and C,...Ch. 1 - The strength-to-weight ratio of a structural...Ch. 1 - A symmetrical framework consisting of three...Ch. 1 - A specimen of a methacrylate plastic is tested in...Ch. 1 - The data shown in the accompanying table are From...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A bar of length 2.0 m is made of a structural...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A circular bar of magnesium alloy is 750 mm long....Ch. 1 - An aluminum bar has length L = 6 ft and diameter d...Ch. 1 - A continuous cable (diameter 6 mm) with tension...Ch. 1 - A wine of length L = 4 ft and diameter d = 0.125...Ch. 1 - A high-strength steel bar used in a large crane...Ch. 1 - A round bar of 10 mm diameter is made of aluminum...Ch. 1 - A polyethylene bar with a diameter d, = 4.0 in. is...Ch. 1 - A square plastic bar (length LP,side dimension...Ch. 1 - A polyethylene bar having rectangular cross...Ch. 1 - A circular aluminum tube of length L = 600 mm is...Ch. 1 - A bar of monel metal with a length L = 9 in. and a...Ch. 1 - A tensile test is performed on a brass specimen 10...Ch. 1 - A hollow, brass circular pipe ABC (see figure)...Ch. 1 - Three round, copper alloy bars having the same...Ch. 1 - An angle bracket having a thickness t = 0.75 in....Ch. 1 - Truss members supporting a roof are connected to a...Ch. 1 - The upper deck ala foothill stadium is supported...Ch. 1 - The inclined ladder AB supports a house painter...Ch. 1 - The Force in the brake cable of the V-brake system...Ch. 1 - A steel plate of dimensions 2.5 × l.5 × 0.08 m and...Ch. 1 - A special-purpose eye boll with a shank diameter d...Ch. 1 - An elastomeric bearing pad consisting of two steel...Ch. 1 - A joint between iwo concrete slabs A and B is...Ch. 1 - A steel punch consists of two shafts: upper shaft...Ch. 1 - A joint between two glass plates A and B is filled...Ch. 1 - A punch for making a slotted hole in ID cards is...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - A flexible connection consisting of rubber pads...Ch. 1 - .15 A hitch-mounted bicycle rack is designed to...Ch. 1 - The clamp shown in the figure supports a load...Ch. 1 - A shock mount constructed as shown iu the figure...Ch. 1 - Prob. 1.8.18PCh. 1 - A spray nozzle for a garden hose requires under a...Ch. 1 - A single steel strut AB with a diameter (a) Find...Ch. 1 - The top portion of a pole saw used to trim (a)...Ch. 1 - A cargo ship is tied down to marine boll arts at a...Ch. 1 - A basketball player hangs on the rim after (a)...Ch. 1 - A bicycle chain consists of a series of small...Ch. 1 - A bar of solid circular cross section is loaded in...Ch. 1 - .2 A torque T0is transmitted between two flanged...Ch. 1 - A tie-down on the deck of a sailboat consists of a...Ch. 1 - Two steel tubes are joined at B by four pins (dp=...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel riser pipe hangs from a drill rig....Ch. 1 - The rear hatch of a van (BDCG in figure part a) is...Ch. 1 - A lifeboat hangs from two ship's davits. as shown...Ch. 1 - A cable and pulley system in the figure part a...Ch. 1 - A ship's spar is attached at the base of a mast by...Ch. 1 - What is the maximum possible value of the clamping...Ch. 1 - A metal bar AB of a weight Ills suspended by a...Ch. 1 - A plane truss is subjected to loads 2P and P at...Ch. 1 - A solid bar of circular cross section (diameter d)...Ch. 1 - A solid steel bar of a diameter d1= 60 mm has a...Ch. 1 - A sign of weight W is supported at its base by...Ch. 1 - The piston in an engine is attached to a...Ch. 1 - An aluminum tube is required to transmit an axial...Ch. 1 - A copper alloy pipe with a yield stress aY= 290...Ch. 1 - A horizontal beam AB with cross-sectional...Ch. 1 - Lateral bracing for an elevated pedestrian walkway...Ch. 1 - A plane truss has joint loads P, 2P, and 3P at...Ch. 1 - Cable DB supports canopy beam OABC as shown in the...Ch. 1 - Continuous cable ADS runs over a small...Ch. 1 - A suspender on a suspension bridge consist of a...Ch. 1 - A square steel tube of a length L = 20 ft and...Ch. 1 - A cable and pulley system at D is used to bring a...Ch. 1 - A pressurized circular cylinder has a sealed cover...Ch. 1 - A tubular post of outer diameter d2is guyed by two...Ch. 1 - A large precast concrete panel for a warehouse is...Ch. 1 - A steel column of hollow circular cross section is...Ch. 1 - An elevated jogging track is supported at...Ch. 1 - A flat bar of a widths b = 60 mm and thickness t =...Ch. 1 - Continuous cable A DB runs over a small friction...Ch. 1 - Continuous cable ADB runs over a small friction...Ch. 1 - Two bars AC and BC of the same material support a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Heat is generated uniformly in a 4 cm-diameter, 16-cm long solid bar (k=2.4 W/m-K). The temperaturesat the center and at the surface of the bar are measured to be 210 oC and 45 oC, respectively. Calculatethe rate of heat generation within the bar. Solve the relevant energy balance equation and the boundaryconditions to calculate the rate of heat generation within the bar. (6 pts)arrow_forwardA hot plane surface is maintained at 100°C, and it is exposed to air at 25°C. The combined heat transfercoefficient between the surface and the air is 25 W/m²·K. You are tasked with designing an insulatingmaterial to cover the surface in order to reduce the heat transfer rate by 90%, meaning only 10% of theheat transfer would occur compared to the situation without insulation. The available insulating materialhas a thermal conductivity of 0.093 W/m·K. Assuming that the heat transfer coefficient and the surface/airtemperatures remain constant, calculate the required thickness of the insulating material in centimeters.arrow_forwardThe euler parameter in the image describes the orientation of N in the reference frame of U. How do I find the euler parameters that describe the orientation of U in the reference frame of N from the given information in the image.arrow_forward
- Fpull Ө A person, weighing 155 lb, is being lifted by a rope thrown. over a tree branch as shown (drawing not to scale). If the static coefficient of friction between the rope and the tree branch is us = 0.67, and the 0 = 45°. Determine the pulling force required to start lifting the person and the pulling force required to keep the person from falling? Pulling force to lift the person: Pulling force to keep the person from falling: lb lbarrow_forwardThe car weighs 1630 lbs and drives up the hill at a constant speed. Assuming the static friction coefficient between the wheels and the road is μs = 0.64, determine the steepest angle that the car can climb without slipping if it is.... a.) rear wheel drive b.) front wheel drive c.) four wheel drive a C CC ①⑧ BY NC Dr. Jacob Moore Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.75 ft b 3.325 ft C 1.66 ft a.) The steepest angle for rear wheel drive is 0 max degrees. b.) The steepest angle for front wheel drive is Omax degrees. c.) The steepest angle for four wheel drive is Omax degrees. = = =arrow_forwardFor the structure below, each member of the truss will safely support a tensile force of 3 kN and a compressive force of 1 kN. Determine the largest mass m that can be safely suspended. Hint: First work through this algebraically to find the forces in each member terms of the mass "m" to determine the largest stress member. 1 m t 1 m 1 m 1m + 1m E B 1977 marrow_forward
- Block A has a mass of 34 kg and block B has a mass of 41 kg. The two blocks are stacked on the ramp with an incline of Ꮎ 0 = 15.4°. Determine the largest horizontal force F that can be applied to block B without either block moving for each of the following two cases: a.) The friction coefficient for the contact between blocks A and B is μs1 0.56 and the friction coefficient for the = contact between block A and the ramp is μs2 = 0.34. b.) The friction coefficient for the contact between blocks A and B is 1 = 0.56 and the friction coefficient for the contact between block A and the ramp is μs2 = 0.17. Ꮎ F B A Part a) The limiting slip condition occurs at Select an answer CC BY NC SA 2016 Eric Davishahl The maximum force before either block A or B slips is N Part b) The limiting slip condition occurs at Select an answer The maximum force before either block A or B slips is Narrow_forwardThe crane truck has a weight of 11000 lb and a center of gravity at point . The parking brake only locks the rear wheels of the truck, so the front wheels are free to rotate. Determine the maximum force F applied at the angle = 0 30.5° that can be exerted on the crane without it slipping or tipping for each of the following cases: Case 1: The static friction coefficient between the rear tires and the ground is μ. = 0.050. ა Case 2: The static friction coefficient between the rear tires and the ground is μα == 0.33. d CGD 口 BY NC SA F 2013 Michael Swanbom кажо с Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 5.5 ft b 9 ft C 4 ft 3 ft 10 ft d h For Case 1, the constraint is Select an answer F = lbs. шал For Case 2, the constraint is Select an answer F пал lbs. and andarrow_forwardYou are leaning your 5.0 ft, 15.0 lb ladder against the wall in your garage. There are 2 rubber foot paddles on the bottom of the ladder, and your garage floor is concrete. The static friction between the rubber and concrete is μs = 0.580. What is the maximum distance from the wall to the rubber foot paddles, which you can lean your ladder without it slipping? Assume the wall is smooth. S The maximum distance = ftarrow_forward
- Instructions. "I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardPearson eText Study Area mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering Problem 14.78 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 2 of 8 Document Sharing User Settings The spring has a stiffness k = 200 N/m and an unstretched length of 0.5 m. It is attached to the 4.6-kg smooth collar and the collar is released from rest at A. Neglect the size of the collar. (Figure 1) Part A Determine the speed of the collar when it reaches B. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 με VB = Value Units Submit Request Answer Provide Feedback ? Review Next >arrow_forwardPearson eText Study Area Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering Problem 15.79 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 6 of 8 > Document Sharing User Settings The two disks A and B have a mass of 4 kg and 5 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.65. Suppose that (VA)1 = 6 m/s, (VB)1 = 8 m/s. (Figure 1) Part A Determine the magnitude of the velocity of A just after impact. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 μÅ (VA)2 = Value Units Submit Request Answer Part B ? Review Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Express your answer in degrees to three significant figures. ΕΠΙ ΑΣΦ vec 01 Submit Request Answer Part C ? Determine the magnitude of the velocity of B just after impact. Express your answer to three significant…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License