BIO Bones and Muscles. A physical therapy patient has a forearm that weighs 20.5 N and lifts a 112.0-N weight. These two forces are directed vertically downward. The only other significant forces on this forearm come from the biceps muscle (which acts perpendicular to the forearm) and the force at the elbow. If the biceps produces a pull of 232 N when the forearm is raised 43.0° above the horizontal, find the magnitude and direction of the force that the elbow exerts on the forearm. (The sum of the elbow force and the biceps force must balance the weight of the arm and the weight it is carrying, so their vector sum must be 132.5 N, upward.)
BIO Bones and Muscles. A physical therapy patient has a forearm that weighs 20.5 N and lifts a 112.0-N weight. These two forces are directed vertically downward. The only other significant forces on this forearm come from the biceps muscle (which acts perpendicular to the forearm) and the force at the elbow. If the biceps produces a pull of 232 N when the forearm is raised 43.0° above the horizontal, find the magnitude and direction of the force that the elbow exerts on the forearm. (The sum of the elbow force and the biceps force must balance the weight of the arm and the weight it is carrying, so their vector sum must be 132.5 N, upward.)
BIO Bones and Muscles. A physical therapy patient has a forearm that weighs 20.5 N and lifts a 112.0-N weight. These two forces are directed vertically downward. The only other significant forces on this forearm come from the biceps muscle (which acts perpendicular to the forearm) and the force at the elbow. If the biceps produces a pull of 232 N when the forearm is raised 43.0° above the horizontal, find the magnitude and direction of the force that the elbow exerts on the forearm. (The sum of the elbow force and the biceps force must balance the weight of the arm and the weight it is carrying, so their vector sum must be 132.5 N, upward.)
In the figure below, what is the net resistance of the circuit connected to the battery? Assume that all resistances in the circuit is equal to 14.00 kΩ. Thank you.
Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.
3
4
Find the currents flowing in the circuit in the figure below. (Assume the resistances are R₁ =6, R₂ = 20, R₂ = 10 N, R₁ = 8, r₁ = 0.75 0, r2=0.50, 3
× A
× A
I,
= 3.78
12
13
= 2.28
=
1.5
× A
R₁
b
a
R₁₂
w
C
1,
12
13
R₂
E3
12 V
E₁
18 V
g
Ez
3.0 V
12
Ea
شرة
R₁
e
24 V
d
= 0.25 0, and 4
=
0.5 0.)
In the circuit shown below Ɛ = 66.0 V, R5 = 4.00 £2, R3 = 2.00 N, R₂ = 2.20 N, I5 = 11.41 A, I = 10.17 A, and d I₁ = 6.88 A. Find the current through R2 and R3, and the values of the resistors R₁ and R. (Due to the nature of this
problem, do not use rounded intermediate values—including answers submitted in WebAssign-in your calculations.)
12
= 8.12
A
RA
=
-1.24
Based on the known variables, which two junctions should you consider to find the current I3? A
9.59
Which loop will give you an equation with just R₁ as the unknown? Did you follow the sign convention for the potential difference across each element in the loop?
6.49
Which loop will give you an equation with just R as the unknown? Did you follow the sign convention for the potential difference across each element in the loop? N
R₁
ww
R₂
www
R4
ww
14
15
www
R5
www
R3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.