
Interpretation:
Table 1.5 is to be used to list the gases from most ideal to least ideal. The trend or trends obvious from this list are to be found out.
Concept introduction:
An ideal gas is denoted as the one in which there are no intermolecular attractive forces or repulsive forces and in which all collisions between the particles such as atoms or molecules are superlatively elastic. Besides, ideals gases can be visualized as a group of perfectly hard spheres which can collide with each other, but which otherwise will not interact with each other. In contrast, real gases are non-hypothetical gases and its molecules can occupy space and have interactions with each other by adhering the

Answer to Problem 1.42E
The gases can be listed as most ideal to least ideal as follows;
The gases are arranged based on increasing trend of their Boyle temperature.
Explanation of Solution
An ideal gas is denoted as the one in which there are no intermolecular attractive forces or repulsive forces and in which all collisions between the particles such as atoms or molecules are superlatively elastic. Besides, ideals gases can be visualized as a group of perfectly hard spheres which can collide with each other, but which otherwise will not interact with each other. At STP most real gases behave like an ideal gas such as nitrogen, hydrogen, oxygen, noble gases, carbon dioxide. The term ideal is applicable for gas at higher temperature and lower pressure. In these conditions the potential energy due to intermolecular forces becomes less important as compared with the particle’s kinetic energy. Besides, the size of the gas molecules is less significant as compared to the empty space between them. Thus, one mole of an ideal occupies a volume of
The main drawback of ideal gas it is unsuccessful at lower temperatures or higher pressures, where intermolecular forces and molecular size of gases plays a significant role. Importantly, it fails for most heavy gases (ex: refrigerants) and gases having strong intermolecular forces (ex: water vapor) and ideal gas does not elucidate phase transitions. Thus, the deviations from the ideal gas behavior can be best described by the ‘compressibility factor Z’. The ideal gas equation is
In contrast, real gases are non-hypothetical gases and its molecules can occupy space and have interactions with each other by adhering the gas laws. Under most conditions, they gas going with low temperatures and high pressures are called non-ideal gases. In terms of volume, the compressibility of non-ideal gases can be written as;
In terms of volume, the compressibility of non-ideal gas is expressed as
Where B, C, D virial coefficient and the equation is called virial equation of state.
The temperature at which the virial coefficient B becomes zero is called Boyle temperature.
a and b are van der Waals constant. This Boyle temperature is used to arrange the gases based on ideal to non-ideal behavior. The order of gases are as follows;
At lower ideality values the gases behaves as ideal gas and undergoes various reactions that an ideal gas will undergo.
Thus, Table 1.5 is used to list the gases from most ideal to least ideal. The trend or trends obvious from this list are found out.
Want to see more full solutions like this?
Chapter 1 Solutions
EBK PHYSICAL CHEMISTRY
- Propose a synthesis of 1-butanamine from the following: (a) a chloroalkane of three carbons (b) a chloroalkane of four carbonsarrow_forwardSelect the stronger base from each pair of compounds. (a) H₂CNH₂ or EtzN (b) CI or NH2 NH2 (c) .Q or EtzN (d) or (e) N or (f) H or Harrow_forward4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. 2. 1. LDA 3. H3O+ HOarrow_forward
- b. H3C CH3 H3O+ ✓ H OHarrow_forward2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forwardIdentify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forward
- Identify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forwardInstructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forwardе. Д CH3 D*, D20arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER





