PRINT COMPANION ENGINEER THERMO
9th Edition
ISBN: 9781119778011
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 1.40P
To determine
The pressure at oil water interface and at bottom of the tank.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. The reading of an automobile gage is proportional to the gage pressure at the bottom of the
tank as shown. The tank is 32 cm deep. Unit weight of gasoline is 6670 N/m³ and that of air is
11.8 N/m³. Unit weight of water is 9790 N/m³.
Vent
Air
Gasoline
Water
a. Determine the gage reading when the tank is full of gasoline.
b. How many cm of air remains at the top when the gage indicates full and the tank is
contaminated with 3 cm of water?
c. Determine the pressure at the interface of the gasoline and water when the gage indicates full.
The final answers( for both) must be correct , Please solve fast & take care.
Because of a break in a buried oil storage tank, ground water has leaked into the tank to the depth L' = 4 ft. The densities of the water
and oil are, respectively, 62 and 55, each in lb/ft³.
Standpipe open
to atmosphere
Palgage) = i
Determine the pressure at the oil-water interface and at the bottom of the tank, each in lbf/in². (gage). Assume L = 14 ft.
Let g = 32.2 ft/s².
Pb(gage) = i
Patm
Determine the pressure at the oil-water interface, in lbf/in². (gage).
lbf/in².
Oil
Water
lbf/in².
Determine the pressure at the bottom of the tank, in lbf/in². (gage).
Chapter 1 Solutions
PRINT COMPANION ENGINEER THERMO
Ch. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 1.4ECh. 1 - Prob. 1.5ECh. 1 - Prob. 1.6ECh. 1 - Prob. 1.7ECh. 1 - Prob. 1.8ECh. 1 - Prob. 1.9ECh. 1 - Prob. 1.10ECh. 1 - Prob. 1.11E
Ch. 1 - Prob. 1.12ECh. 1 - Prob. 1.13ECh. 1 - Prob. 1.14ECh. 1 - Prob. 1.1CUCh. 1 - Prob. 1.2CUCh. 1 - Prob. 1.3CUCh. 1 - Prob. 1.4CUCh. 1 - Prob. 1.5CUCh. 1 - Prob. 1.6CUCh. 1 - Prob. 1.7CUCh. 1 - Prob. 1.8CUCh. 1 - Prob. 1.9CUCh. 1 - Prob. 1.10CUCh. 1 - Prob. 1.11CUCh. 1 - Prob. 1.12CUCh. 1 - Prob. 1.13CUCh. 1 - Prob. 1.14CUCh. 1 - Prob. 1.15CUCh. 1 - Prob. 1.16CUCh. 1 - Prob. 1.17CUCh. 1 - Prob. 1.18CUCh. 1 - Prob. 1.19CUCh. 1 - Prob. 1.20CUCh. 1 - Prob. 1.21CUCh. 1 - Prob. 1.22CUCh. 1 - Prob. 1.23CUCh. 1 - Prob. 1.24CUCh. 1 - Prob. 1.25CUCh. 1 - Prob. 1.26CUCh. 1 - Prob. 1.27CUCh. 1 - Prob. 1.28CUCh. 1 - Prob. 1.29CUCh. 1 - Prob. 1.30CUCh. 1 - Prob. 1.31CUCh. 1 - Prob. 1.32CUCh. 1 - Prob. 1.33CUCh. 1 - Prob. 1.34CUCh. 1 - Prob. 1.35CUCh. 1 - Prob. 1.36CUCh. 1 - Prob. 1.37CUCh. 1 - Prob. 1.38CUCh. 1 - Prob. 1.39CUCh. 1 - Prob. 1.40CUCh. 1 - Prob. 1.41CUCh. 1 - Prob. 1.42CUCh. 1 - Prob. 1.43CUCh. 1 - Prob. 1.44CUCh. 1 - Prob. 1.45CUCh. 1 - Prob. 1.46CUCh. 1 - Prob. 1.47CUCh. 1 - Prob. 1.48CUCh. 1 - Prob. 1.49CUCh. 1 - Prob. 1.50CUCh. 1 - Prob. 1.51CUCh. 1 - Prob. 1.52CUCh. 1 - Prob. 1.53CUCh. 1 - Prob. 1.54CUCh. 1 - Prob. 1.55CUCh. 1 - Prob. 1.56CUCh. 1 - Prob. 1.57CUCh. 1 - Prob. 1.58CUCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10PCh. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A tank is filled with a certain liquid to height of 1.25 m from its bottom. If the pressure gauge at the tank bottom reads 1.46 psi, what is the density of the liquid in lb/ft³. 83.2 Answer is not among the choices a. 51.3 b. 62.4 c. a. 3.42 b. 6.83 d. A hydraulic jack uses two pistons, 0.35 in diameter and 1.0 in diameter, respectively. In order for the 1 inch pistion to raise a load of 100 lb, how much force must be applied at the small piston in pounds? 8.57 12.2 C. d.arrow_forwardSubject Thermodynamics. Instructions: Don't round off in the process. Just round off in the final answer with 2 decimals only. Use 273.15 K to convert Celsius to Kelvin.arrow_forwardUsing Boyle's Law Demonstrator, the absolute pressure and the volume of air are respectively 61.15 kPa and 0.5 L. When the oil height is decreased by 2 cm, the new absolute pressure becomes 50.95 kPa. So, the new air volume will be approximately equal to: Select one: a. 0.6 L b. 0.4 L c. It can't be found because there are missed given data. d. 0.2 Larrow_forward
- Q5) The total pressure in a gas pipeline is to be maintained at three times atmospheric pressure. Figure 3 shows the cross-sectional area of the pipeline that is connected to a manometer filled with mercury. An inspector measures a difference of 1.25 m between the two columns of mercury. Is the gas pressure being maintained at the desired value? The density of mercury is 13600 kg/m³. open to the atmosphere B A a - gas of density P. at pressure P fluid of density P,arrow_forwardA 28 degree API oil has a temperature of 4.4 degree Celcius. what is its density in Kg/Larrow_forwardTwo (2) water reservoirs are connected to each other, as shown below. If the pressure difference between the two tanks is 21.6 kPa, calculate the value of "a" in mm. Water A Water 26.8 cm 2a B Mercury SG = 13.6 Note: Round-off only on your final answer, in four decimal places.arrow_forward
- 5. If 10 m3 of atmospheric air at zero degrees centigrade temperature are compressed to a volume of 1 m3 at 100oC, what will be the pressure of air in kPa? (3 DECIMALS IN FINAL ANSWER PLS)arrow_forwardFLUID MECHANICS ANSWER 1.42arrow_forwardThe expansion tank of a household hot-water heating system is open to the atmosphere and is 10 meters above a pressure gauge attached to the furnace. What is the gauge pressure at the furnace, in pascals? In atmospheres? Include given, fbd and solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY