
(a)
Interpretation:
The van der Waals equation of state has to be expressed as the power series of
Concept Introduction:
van der Waals equation:
van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
(a)

Explanation of Solution
A mathematical function of the form
Now the van der Waals equation of state has to be expressed as an expansion series of
Hence van der Waals equation can be represented as,
Now the form needed for expansion is
Now according to the series expansion,
Hence here
So the expansion form can be written as,
The equation can be rearranged as,
Thus the van der Waals equation can be represented as the power series of
(b)
Interpretation:
An expression of the Boyle temperature has to be derived in the terms of van der Waals constants
Concept Introduction:
van der Waals equation:
van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
Virial equation:
General equation of states for real gases is virial equation which is proposed by Kammerlingh-Onnes. He proposed the equation as,
Here,
The 1st virial coefficient is
Boyle temperature:
The temperature at which real gas starts behaving ideally is called the Boyle temperature.
At this temperature the 2nd virial coefficient becomes zero and 3rd, 4th and higher virial coefficients become insignificant. The virial equation for real gas becomes ideal gas equation
(b)

Explanation of Solution
At Boyle temperature the 2nd virial coefficient becomes zero.
Now, from part (a) it has been obtained that,
Virial equation is,
Thus comparing the above two equations the 2nd virial coefficient is,
At Boyle temperature
Thus,
Thus the expression for Boyle temperature is
(c)
Interpretation:
Boyle temperature for carbon dioxide has to be calculated for given van der Waals constant values.
Concept Introduction:
van der Waals equation:
van der Waals equation represents the real gas equation. Real gas molecules have their own volume and there is force of attraction and repulsion constantly working between the real gas molecules unlike the ideal gas molecules. Hence ideal gas equation is subjected to modify with pressure and volume correction and thus van der Waals equation has been formed for real gases.
Virial equation:
General equation of states for real gases is virial equation which is proposed by Kammerlingh-Onnes. He proposed the equation as,
Here,
The 1st virial coefficient is
Boyle temperature:
The temperature at which real gas starts behaving ideally is called the Boyle temperature.
At this temperature the 2nd virial coefficient becomes zero and 3rd, 4th and higher virial coefficients become insignificant. The virial equation for real gas becomes ideal gas equation
(c)

Answer to Problem 1.3PR
The Boyle temperature for carbon dioxide is
Explanation of Solution
From the above part (b) the expression for Boyle temperature has been obtained as,
Given that the values of van der Waals constants are,
Thus the value of Boyle temperature for carbon dioxide is,
Hence the Boyle temperature for carbon dioxide is
Want to see more full solutions like this?
Chapter 1 Solutions
Elements Of Physical Chemistry
- Can you explain how I get these here and show the steps plz?arrow_forwardGive the IUPAC name for this compound Hydrocarbon Condensed Formulas Hint C2H5 CH2CH3 expand that in all the formula Part A: (CH3)2CHCH(C2H5)CH2CH2CH3 Give the IUPAC name for this compound. Part B: CH2=C(C2H5)CH2CH2CH3 Give the IUPAC name for this compound. Part C: (CH3)2C=CHC(C2H5)=CH2 Give the IUPAC name for this compound. Part D: CH3C=CCH(C2H5)2 Give the IUPAC name for this compound. Part E: (CH3)3CC=CCH2CH=C(CH3)2arrow_forwardSelect/ Match the correct letter from the image below for the IUPAC names given below: A B C D 3 E F G H K L Part 1. 4-methylheptane For example.mmmm Answer Letter H _for part 1 Part 2. 2,4-dimethylhexane Part 3. 2,3-dimethylpentane Part 4. 2,2-dimethylhexane Part 5. 2-ethyl-1,1,3,3-tetramethylcyclopentane Part 6. 3-ethyl-2-methylpentanearrow_forward
- Can u show the process as to how to get these?arrow_forwardSketch the expected 'H NMR spectra for the following compound. Label all of the H's in the structure and the corresponding signal for the spectra you sketch. Make sure you include the integration value and the splitting pattern for each signal Indicate how many signals you would expect in the 13C NMRarrow_forwardUse IUPAC naming rules to name the following hydrocarbon compounds: CH2-CH3 | a) CH-CH-CH2-CH-CH-CH3 b) | CH2 CH3 | CH3 CH3 \ / C=C H 1 H CH2-CH3 c) d) CH=C-CH3 e) CH3-CH2-CH2-CH=CH-CH3 f) CH2=CH-CH2-CH=CH-CH3 g) CH3-CH2-C = C-CH2-CH3 h)arrow_forward
- Q5 Name the following : a. b. C. d. e.arrow_forward25. Predict the major product of the following reaction. 1 equivalent of each of the starting materials was used. H₂C CH3 CH3 H3C H3C H3C. CH2 + H3C. heat CH3 CH H.C. CH3 H.C H.C CH3 CH CH3 CH3 A B C Earrow_forwardFind chemical structures based on the below information. a) Chemical formula C6H8O Compound is aromatic plus has two 1H NMR peaks that integrated for 3 each that are singlets (it could have more peaks in the 1H NMR b) Chemical Formula: C6H100 Compounds is conjugated 'H NMR has a signal that integrates for 6 and is a doublet IR spectra has a signal at 1730 cm-1arrow_forward
- Jaslev Propose a synthesis of the following starting from benzene and any other reagents and chemicals. No mechanisms are required. Indicate the condition for each step plus the major product for each step. More than two steps are required. Step 1 Step 2 مہد Brarrow_forwardPart C: The line formula for another branched alkane is shown below. i. In the IUPAC system what is the root or base name of this compound? ii. How many alkyl substituents are attached to the longest chain? iii. Give the IUPAC name for this compound.arrow_forwardPart D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





