Fundamentals Of Engineering Thermodynamics, 9e
9th Edition
ISBN: 9781119391432
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 1.39P
To determine
Force exerted by the cable.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A container is filled with oil and water. The weight of the same container when half filled with
a liquid (s=1.95) alone is 90kN. If the volume of water is twice that the volume of oil, find the
specific gravity of the oil so that the weight of the container when fully filled with oil-water
combination is the same when half filled with the aforementioned liguid.
An iceberg weighing 57 lb/ft3
floats in the ocean (64 lb/ft3) with a volume of 21,000 ft above
the surface. What is the total volume of the iceberg?
An alternative English unit for mass is the slug with 1 slug = 32.1740 lbm. If local gravitational acceleration is 32.0 ft/s2, find the weight W of an object with mass of m = 1 slug.
Chapter 1 Solutions
Fundamentals Of Engineering Thermodynamics, 9e
Ch. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 1.4ECh. 1 - Prob. 1.5ECh. 1 - Prob. 1.6ECh. 1 - Prob. 1.7ECh. 1 - Prob. 1.8ECh. 1 - Prob. 1.9ECh. 1 - Prob. 1.10ECh. 1 - Prob. 1.11E
Ch. 1 - Prob. 1.12ECh. 1 - Prob. 1.13ECh. 1 - Prob. 1.14ECh. 1 - Prob. 1.1CUCh. 1 - Prob. 1.2CUCh. 1 - Prob. 1.3CUCh. 1 - Prob. 1.4CUCh. 1 - Prob. 1.5CUCh. 1 - Prob. 1.6CUCh. 1 - Prob. 1.7CUCh. 1 - Prob. 1.8CUCh. 1 - Prob. 1.9CUCh. 1 - Prob. 1.10CUCh. 1 - Prob. 1.11CUCh. 1 - Prob. 1.12CUCh. 1 - Prob. 1.13CUCh. 1 - Prob. 1.14CUCh. 1 - Prob. 1.15CUCh. 1 - Prob. 1.16CUCh. 1 - Prob. 1.17CUCh. 1 - Prob. 1.18CUCh. 1 - Prob. 1.19CUCh. 1 - Prob. 1.20CUCh. 1 - Prob. 1.21CUCh. 1 - Prob. 1.22CUCh. 1 - Prob. 1.23CUCh. 1 - Prob. 1.24CUCh. 1 - Prob. 1.25CUCh. 1 - Prob. 1.26CUCh. 1 - Prob. 1.27CUCh. 1 - Prob. 1.28CUCh. 1 - Prob. 1.29CUCh. 1 - Prob. 1.30CUCh. 1 - Prob. 1.31CUCh. 1 - Prob. 1.32CUCh. 1 - Prob. 1.33CUCh. 1 - Prob. 1.34CUCh. 1 - Prob. 1.35CUCh. 1 - Prob. 1.36CUCh. 1 - Prob. 1.37CUCh. 1 - Prob. 1.38CUCh. 1 - Prob. 1.39CUCh. 1 - Prob. 1.40CUCh. 1 - Prob. 1.41CUCh. 1 - Prob. 1.42CUCh. 1 - Prob. 1.43CUCh. 1 - Prob. 1.44CUCh. 1 - Prob. 1.45CUCh. 1 - Prob. 1.46CUCh. 1 - Prob. 1.47CUCh. 1 - Prob. 1.48CUCh. 1 - Prob. 1.49CUCh. 1 - Prob. 1.50CUCh. 1 - Prob. 1.51CUCh. 1 - Prob. 1.52CUCh. 1 - Prob. 1.53CUCh. 1 - Prob. 1.54CUCh. 1 - Prob. 1.55CUCh. 1 - Prob. 1.56CUCh. 1 - Prob. 1.57CUCh. 1 - Prob. 1.58CUCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10PCh. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Weight of an object in air is 100 N. The object is placed in a liquid. Increase in volume of liquid is 1.5m3. If specific weight of the liquid is 10N/m3, what is the weight of the object in liquid.arrow_forwardThe mass of a fluid system is 0.311 slug, its density is 480 kg/m^3 and g is 31.9 fps. Find (a) the specific volume. Find (b) the specific weight.Find (c) the total volume.arrow_forwardP1.4 A gas is contained in a cylinder behind a frictionless piston of diameter 0.1 m and mass 25 kg. When an additional mass M is placed on the piston the gage pressure of the gas becomes 2.0 bar. The local barometric pressure is 775 mm of mercury. (a) Calculate (i) the mass of M and (ii) the absolute pressure of the gas in the cylinder. (b) The piston is held in this position with the aid of a lock on the outside while heat is supplied to the gas until its absolute pressure becomes 4 bar. Calculate the force on the lock in the final equilibrium state. [Answers: (a) (i) 135 kg, (ii) 3.034 bar, (b) 758 N]arrow_forward
- A person weighs 30lb on the moon, where g = 5.32 ft/s2. Cetermine (a) the mass of the person; and (b) the weight of the person on earth.arrow_forwardThe weight of an airplane varies with the cube of the plane’s length. The lift generated by an airplane’swings varies with the square of the plane’s length. Will a different airplane with the same constants be able to fly if it is 75 feet long?arrow_forwardA body weighs 1000 lb with gravity g defined in the English system. (a) What is the mass in kg? (b) What will the weight be in N? in the lunar gravitational field (c) What will be the acceleration if a force of 400 lb is applied on the moon and on the earth?arrow_forward
- THERMODYNAMICS Prob 1. A piston weighs 4.3 kgs and has a cross sectional area of 450 mm2. Determine the pressure that is exerted by this piston on the gas in the chamber, as shown in the figure. Assume gravitational acceleration 'g' to be 9.81 m/sec2. Piston Gas Prob 2. Find the mass of air in a closed chamber measuring 35 ft x 20 ft x 10 ft, when the pressure is 17 Ib/in? and the temperature is 75°F. Assume air to be an ideal gas.arrow_forwardA spherical balloon has a diameter of 12 meters and is filled with Helium. Density of Helium is one seventh density of air. If density of air is 1.16 kg/m Determine the buoyancy force by air (in kN) isarrow_forwardIf a 0.9 kg object hanging from a spring stretches it by 0.20 m, then by how much will the spring be stretched (in m) if a 1.8 kg object is suspended from it?arrow_forward
- A liquid has a mass of 1500 kg with a total volume of 0.853 m3. Find: The weight of the liquid in N. The mass density of the liquid in kg/m3. The specific weight of the liquid in N/m3. The specific gravity of the liquid.arrow_forwardIce with a volume of 91,125 cm3 turns into liquid and is placed in a spherical container filling it. At 0°C, the specific volume of ice is 1.1 cm3/g. What is the diameter of the spherical vessel in inch?arrow_forwardUse a paper sheet to solve, make sure it's correct.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY