![Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 2 Terms (12 Months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781337594301/9781337594301_largeCoverImage.gif)
Concept explainers
Space Frame ABC is clamped at A, except it is free to rotate at A about the x and y axes. Cables DC and EC support the frame at C. Force Py= - 50 lb is applied at the mid-span of AS, and a concentrated moment Mx= -20 in-lb acts at joint B.
(a) Find reactions at support A.
(b) Find cable tension Forces.
(a)
![Check Mark](/static/check-mark.png)
Reactions at support A.
Answer to Problem 1.3.31P
The correct answers are:
Explanation of Solution
Given Information:
You have following figure with all relevant information,
and
Draw free body diagram of joints and use equilibrium of forces to determine the unknowns.
Calculation:
Draw free body diagram as shown in the following figure,
Analyze the free body diagram of member ABC.
The forces and corresponding position vectors are,
Force | Position vector |
|
|
|
|
|
|
|
|
Take equilibrium of forces vector form,
The vector equation yields three equations in components form as below,
Now take equilibrium of moments about A in vector form as,
Evaluate the cross products to get,
The vector equation yields three equations in components form as below,
Solve equations (1-6) to get,
Conclusion:
Therefore the forces and moments are:
(a)
![Check Mark](/static/check-mark.png)
Cable forces.
Answer to Problem 1.3.31P
The correct answers are:
Explanation of Solution
Given Information:
You have following figure with all relevant information,
and
Draw free body diagram of joints and use equilibrium of forces to determine the unknowns.
Calculation:
Draw free body diagram as shown in the following figure,
Analyze the free body diagram of member ABC.
The forces and corresponding position vectors are,
Force | Position vector |
|
|
|
|
|
|
|
|
Take equilibrium of forces vector form,
The vector equation yields three equations in components form as below,
Now take equilibrium of moments about A in vector form as,
Evaluate the cross products to get,
The vector equation yields three equations in components form as below,
Solve equations (1-6) to get,
Conclusion:
Therefore cable forces are:
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 2 Terms (12 Months) Printed Access Card
- Draw top, side, front view With pen(cil) and paper Multi view drawing and handwriting all of itarrow_forwardA wheel of diameter 150.0 mm and width 37.00 mm carrying a load 2.200 kN rolls on a flat rail. Take the wheel material as steel and the rail material as cast iron. Assume the figure given, which is based on a Poisson's ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses σr, σy, σz, and Tmax for the wheel. 1.0 0.8 0, т Ratio of stress to Pmax 0.4 0.6 90 69 0.2 0.5b b 1.5b Tmax 2b Distance from contact surface The Hertizian stresses are as follows: 02 = or = -23.8 psi for the wheel =| necessary.) σy for the wheel =| MPa σz for the wheel = MPa V4 for the wheel = | MPa 2.5b ཡི 3b MPa (Include a minus sign ifarrow_forwardOnly question 3arrow_forward
- In cold isostatic pressing, the mold is most typically made of which one of the following: thermosetting polymer tool steel sheet metal textile rubberarrow_forwardThe coefficient of friction between the part and the tool in cold working tends to be: lower higher no different relative to its value in hot workingarrow_forwardThe force F={25i−45j+15k}F={25i−45j+15k} lblb acts at the end A of the pipe assembly shown in (Figure 1). Determine the magnitude of the component F1 which acts along the member AB. Determine the magnitude of the component F2 which acts perpendicular to the AB.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305501607/9781305501607_smallCoverImage.gif)