Modern Physics For Scientists And Engineers
2nd Edition
ISBN: 9781938787751
Author: Taylor, John R. (john Robert), Zafiratos, Chris D., Dubson, Michael Andrew
Publisher: University Science Books,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.18P
To determine
To prove:
change in shift is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One of the difficulties with the Michelson Morley experiment is that several extraneous effects (mechanical vibrations, variations of temperature, etc) can produce unwanted shifts in the interference pattern, masking the expected shift of interest. Suppose, for example, that during the experiment the temperature of one arm of the interferometer were to rise by deltaT. This would increase the arm’s length (L) by delta(L) =aLdeltaT, where a=10-5 is the arm’s coefficient of expansion. a) Symbolically, express the shift delta(N) that this temperature change would cause (in terms of a, L, deltaT, and lamda).b) Calculate deltaN for lamda=590nm, L=50cm, and deltaT=0.01 C. c) Make a conclusion about the importance of careful temperature control in the experiment by comparing result in b) with the expected shift deltaN (without temperature correction). Hint: we calculated the expected shift in class for different dimensions of the Michelson Interferometer.
Michelson-Morley Experiment. A shift of one fringe in the Michelson-Morley
experiment corresponds to a change in the round-trip travel time along one arm
of the interferometer by one period of vibration of light (about 2 X 10-15 s) when
the apparatus is rotated by 90. Based on the results of such experiment, what
velocity through the ether would be deduced from a shift of one fringe? (Take the
length of the interferometer arm to be 11 m.)
Michelson and Morley were able to obtain an optical path length l4 + lz of about 22 m.
Apparatus had nearly equal arm lengths l = l2 = 1. If 1 = 5.5 × 10-7m and v/c=
10-4, calculate the expected fringe shift for ether to exist.
%3D
Chapter 1 Solutions
Modern Physics For Scientists And Engineers
Ch. 1 - Prob. 1.1PCh. 1 - Prob. 1.2PCh. 1 - Prob. 1.3PCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10P
Ch. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.15PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49PCh. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - Prob. 1.52PCh. 1 - Prob. 1.53P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Muons are unstable subatomic particles that decay to electrons with a mean lifetime of 2.2 µs. They are produced when cosmic rays bombard the upper atmosphere about 10 km above the earth’s surface, and they travel very close to the speed of light. The problem we want to address is why we see any of them at the earth’s surface. (a) What is the greatest distance a muon could travel during its 2.2 µs lifetime? (b) According to your answer in part (a), it would seem that muons could never make it to the ground. But the 2.2 µs lifetime is measured in the frame of the muon, and muons are moving very fast. At a speed of 0.999c, what is the mean lifetime of a muon as measured by an observer at rest on the earth? How far would the muon travel in this time? Does this result explain why we find muons in cosmic rays? (c) From the point of view of the muon, it still lives for only 2.2 µs, so how does it make it to the ground? What is the thickness of the 10 km of atmosphere through which the muon…arrow_forwardAs a high-speed spaceship flies past you, it fires a strobe light that sends out a pulse of light in all directions. An observer aboard the spaceship measures a spherical wave front that spreads away from the spaceship with the same speed c in all directions. (a) What is the shape of the wave front that you measure? (i) Spherical; (ii) ellipsoidal, with the longest axis of the ellipsoid along the direction of the spaceship’s motion; (iii) ellipsoidal, with the shortest axis of the ellipsoid along the direction of the spaceship’s motion; (iv) not enough information is given to decide. (b) As measured by you, does the wave front remain centered on the spaceship?arrow_forwardYour video analysis of the motion of a marble gives it position in frame 23 as (x23, Y23) = (0.134 m, 0.120 m) and its position in frame 24 as (x24, 324) = (0.122 m, 0.112 m). You esti- mate that you can measure the r and y positions with uncertainty +0.003 m. The frame rate of the video is 30 frames/s, which means the time interval between frames is At = 0.033 333 s. The uncertainty of the frame rate of a video camera is VERY small. For the sake of this prob- lem, use 8(At) = 1 x 10-6 s. The mass of the marble is (2.031 +0.001) x 10-2 kg. Calculate the following quantities: 4. The value of the momentum component p = mv, and its uncertainty, 5. The value of the momentum component py = muy and its uncertainty, and 6. The value of the kinetic energy K = mv² = m(v² + v²) and its uncertainty.arrow_forward
- A sodium light source moves in a horizontal circle at a constant speed of 0.100c while emitting light at the proper wavelength of l0 = 589.00 nm. Wavelength l is measured for that light by a detector fixed at the center of the circle.What is the wavelength shift l - l0?arrow_forwardYour video analysis of the motion of a marble gives it position in frame 23 as (x23, 923) = (0.134 m, 0.120 m) and its position in frame 24 as (x24, Y24) = (0.122 m, 0.112 m). You esti- mate that you can measure the x and y positions with uncertainty +0.003 m. The frame rate of the video is 30 frames/s, which means the time interval between frames is At = 0.033 333 s. The uncertainty of the frame rate of a video camera is VERY small. For the sake of this prob- lem, use (At) = 1 x 10-6 s. The mass of the marble is (2.031 +0.001) x 10-2 kg. Calculate the following quantities: 1. The value of the velocity component U = Xi+1Xi At and its uncertainty, Yi+1 Yi = and its uncertainty, At 2. The value of the velocity component vy 3. The value of the velocity magnitude v = 4. The value of the momentum component p 5. The value of the momentum component Py = muy and its uncertainty, and 6. The value of the kinetic energy K = =mv² = m(v²+v²) and its uncertainty. v2+2 and its uncertainty, = mv, and…arrow_forwardLet the number density (stars/volume) of stars be p. Take it to be uniform throughout the universe. Calculate the number of stars dN contained in a shell around the earth at a distance from R to R + dR, and calculate the total light intensity from the stars (assume all the stars emit with the same power) in this shell.arrow_forward
- A star’s spectrum emits more radiation with a wavelength of 690.0 nm than with any other wavelength. If the star is 9.78 ly from Earth and its radius is 7.20 × 108 m, what will an Earth-based observer measure for this star’s intensity? Stars are nearly perfect blackbodies. (Note: ly stands for light-years.) Answer in W/m2arrow_forwardA shift of onefringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of the interferometer by one period of vibration of light (about 2 ×10−15s) when the apparatus is rotated by 90◦. Based onthe results of such experiment,what velocity through the ether would be deduced from a shift of one fringe? (Take the length of the interferometer arm to be 11 m.)arrow_forwardA free neutron has an infinite lifetime. Select one: O True O False O No answer Depending on the media, the refraction coefficient for the light can be slightly higher or slightly lower than 1. Select one: O True O False No answerarrow_forward
- In a time division multiplexing (TDM) system, consider a scenario where 10 different sources, each generating data at a rate of 1 Mbps, need to be multiplexed onto a single transmission line. If the TDM frame duration is 1 millisecond, what should be the transmission line's minimum bandwidth capacity to accommodate all the sources simultaneously?arrow_forwardThe elliptical galaxy NGC 4889 is the largest galaxy in the Coma Cluster (shown in the image below taken by the Hubble Space Telescope). After analysing the spectrum of NGC 4889, an astronomer identifies a spectral line as being CaII (singly ionised Calcium) with a measured wavelength of 401.8 nm. The true, rest wavelength of this spectral line, measured in a lab, is 393.3 nm. Using a Hubble constant of ?0 = 70 km/s/Mpc, find the distance to this galaxy cluster. Give your answer in megaparsecs and in light-years.arrow_forwardConsider two frames S and S, where 5 moves with velocity vî with respect to S'. Consider an electric field (according to S) travelling in the x-direction and polarized in the z-direction given by É(E, t) = E cos(kr – wt)k Solve for its associated magnetic field.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning