
(a)
To calculate:
The block's position as a function of time for Oxy axes and the time taken by the block to reach the bottom.

Answer to Problem 1.1P
Position of the block in terms of (x,y) =
Time taken by the block to reach the ground
Explanation of Solution
Given:
A block of mass msliding down on an inclined plane making angle θ with respect to the horizontal surface.
Formula used:
Using equation of motion,
s = distance travelled by the block
u = initial velocity
t = time taken by the block
a = acceleration of the block
Calculation:
Forces on the block along x-axis,
Since the block is moving in x direction therefore, by the equation of motion.
m is the mass of the block
a is the acceleration of the block
by Newton's law of motion,
N = normal force
force of friction is given by
Put the value of N in equation (2)
Put the value of fxin equation (1)
By the equation of motion
Put the value of a from equation (3)
Since there is no motion in vertical direction,
Therefore, y =0
Time taken by the block to reach the ground.
Here, distance covered by the block is l.
Therefore, put
Conclusion:
Therefore, position of the block can be defined in
Time taken by the block to travel distance l,
(b)
To calculate:
The block's position as a function of time for Ox'y' axes and the time taken by the block to reach the bottom.

Answer to Problem 1.1P
Position of the block in terms of
Time taken by the block to reach the ground,
Explanation of Solution
Given:
A block of mass m sliding down on an inclined plane making angle θ with respect to the horizontal surface.
Formula used:
Using equation of motion,
s = distance travelled by the block
u = initial velocity
t = time taken by the block
a = acceleration of the block
Calculation:
Distance travelled in x-direction
Distance travelled in y direction
Position of the block in
Time taken by the block to reach the ground
Adding equation (1) and (2)
It is clear from the solution of part (a) and (b), that time taken by the box is same to travel the distance l.
Taking
Conclusion:
For
For
Want to see more full solutions like this?
Chapter 1 Solutions
Modern Physics For Scientists And Engineers
- 3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Pls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forwardModified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forward
- Pls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward1. The piston in the figure has a mass of 0.5 kg. The infinitely long cylinder is pushed upward at a constant velocity. The diameters of the cylinder and piston are 10 cm and 9 cm, respectively, and there is oil between them with v = 10⁻⁴ m^2/s and γ = 8,000 N/m³. At what speed must the cylinder ascend for the piston to remain at rest?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





