A First Course In Probability, Global Edition
10th Edition
ISBN: 9781292269207
Author: Ross, Sheldon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.15P
Consider a group of 20 people. If everyone shakes hands with everyone else, how many handshakes take place?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule01:46
Students have asked these similar questions
A mechatronic assembly is subjected to a final functional test. Suppose that defects occur at random in these
assemblies, and that defects occur according to a Poisson distribution with parameter >= 0.02.
(a) What is the probability that an assembly will have exactly one defect?
(b) What is the probability that an assembly will have one or more defects?
(c) Suppose that you improve the process so that the occurrence rate of defects is cut in half to λ = 0.01.
What effect does this have on the probability that an assembly will have one or more defects?
A random sample of 50 units is drawn from a production process every half hour. The fraction of non-conforming
product manufactured is 0.02. What is the probability that p < 0.04 if the fraction non-conforming really is
0.02?
A textbook has 500 pages on which typographical errors could occur. Suppose that there are exactly 10 such
errors randomly located on those pages. Find the probability that a random selection of 50 pages will contain
no errors. Find the probability that 50 randomly selected pages will contain at least two errors.
Chapter 1 Solutions
A First Course In Probability, Global Edition
Ch. 1 - a. How many different 7-place license plates are...Ch. 1 - How many outcome sequences are possible ten a die...Ch. 1 - Twenty workers are to be assigned to 20 different...Ch. 1 - John, Jim, Jay, and Jack have formed a band...Ch. 1 - For years, telephone area codes in the United...Ch. 1 - A well-known nursery rhyme starts as follows: As I...Ch. 1 - a. In how many ways can 3 boys and 3 girls sit in...Ch. 1 - When all letters are used, how many different...Ch. 1 - A child has 12 blocks, of which 6 are black, 4 are...Ch. 1 - In how many ways can 8 people be seated in a row...
Ch. 1 - In how many ways can 3 novels. 2 mathematics...Ch. 1 - How many 3 digit numbers zyz, with x, y, z all...Ch. 1 - How many different letter permutations, of any...Ch. 1 - Five separate awards (best scholarship, best...Ch. 1 - Consider a group of 20 people. If everyone shakes...Ch. 1 - How many 5-card poker hands are there?Ch. 1 - A dance class consists of 22 students, of which 10...Ch. 1 - A student has to sell 2 books from a collection of...Ch. 1 - Seven different gifts are to be distributed among...Ch. 1 - A committee of 7, consisting of 2 Republicans, 2...Ch. 1 - From a group of 8 women and 6 men, a committee...Ch. 1 - A person has 8 friends, of whom S will be invited...Ch. 1 - Consider the grid of points shown at the top of...Ch. 1 - In Problem 23, how many different paths are there...Ch. 1 - A psychology laboratory conducting dream research...Ch. 1 - Show k=0n(nk)2k=3n Simplify k=0n(nk)xkCh. 1 - Expand (3x2+y)5.Ch. 1 - The game of bridge is played by 4 players, each of...Ch. 1 - Expand (x1+2x2+3x3)4.Ch. 1 - If 12 people are to be divided into 3 committees...Ch. 1 - If 8 new teachers are to be divided among 4...Ch. 1 - Ten weight lifters are competing in a team...Ch. 1 - Delegates from 10 countries, including Russia,...Ch. 1 - If 8 identical blackboards are to be divided among...Ch. 1 - An elevator starts at the basement with 8 people...Ch. 1 - We have 520.000 that must be invested among 4...Ch. 1 - Suppose that 10 fish are caught at a lake that...Ch. 1 - Prove the generalized version of the basic...Ch. 1 - Two experiments are to be performed. The first can...Ch. 1 - In how many ways can r objects be selected from a...Ch. 1 - There are (nr) different linear arrangements of n...Ch. 1 - Determine the number of vectors (x1,...,xn), such...Ch. 1 - How many vectors x1,...,xk are there for which...Ch. 1 - Give an analytic proof of Equation (4.1).Ch. 1 - Prove that (n+mr)=(n0)(mr)+(n1)(mr1)+...+(nr)(m0)...Ch. 1 - Use Theoretical Exercise 8 I to prove that...Ch. 1 - From a group of n people, suppose that we want to...Ch. 1 - The following identity is known as Fermats...Ch. 1 - Consider the following combinatorial identity:...Ch. 1 - Show that, for n0 ,i=0n(1)i(ni)=0 Hint: Use the...Ch. 1 - From a set of n people, a committee of size j is...Ch. 1 - Let Hn(n) be the number of vectors x1,...,xk for...Ch. 1 - Consider a tournament of n contestants in which...Ch. 1 - Present a combinatorial explanation of why...Ch. 1 - Argue...Ch. 1 - Prove the multinomial theorem.Ch. 1 - In how many ways can n identical balls be...Ch. 1 - Argue that there are exactly (rk)(n1nr+k)...Ch. 1 - Prob. 1.22TECh. 1 - Determine the number of vectors (xi,...,xn) such...Ch. 1 - How many different linear arrangements are there...Ch. 1 - If 4 Americans, 3 French people, and 3 British...Ch. 1 - A president. treasurer, and secretary. all...Ch. 1 - A student is to answer 7 out of 10 questions in an...Ch. 1 - In how many ways can a man divide 7 gifts among...Ch. 1 - How many different 7-place license plates are...Ch. 1 - Give a combinatorial explanation of the...Ch. 1 - Consider n-digit numbers where each digit is one...Ch. 1 - Consider three classes, each consisting of n...Ch. 1 - How many 5-digit numbers can be formed from the...Ch. 1 - From 10 married couples, we want to select a group...Ch. 1 - A committee of 6 people is to be chosen from a...Ch. 1 - An art collection on auction consisted of 4 Dalis,...Ch. 1 - Prob. 1.14STPECh. 1 - A total of n students are enrolled in a review...Ch. 1 - Prob. 1.16STPECh. 1 - Give an analytic verification of...Ch. 1 - In a certain community, there are 3 families...Ch. 1 - If there are no restrictions on where the digits...Ch. 1 - Verify the...Ch. 1 - Simplify n(n2)+(n3)...+(1)n+1(nn)
Additional Math Textbook Solutions
Find more solutions based on key concepts
Find the point-slope form of the line passing through the given points. Use the first point as (x1, .y1). Plot ...
College Algebra with Modeling & Visualization (5th Edition)
Implicit differentiation Carry out the following steps. a. Use implicit differentiation to find dydx. b. Find t...
Calculus: Early Transcendentals (2nd Edition)
True or False? In Exercises 5–8, determine whether the statement is true or false. If it is false, rewrite it a...
Elementary Statistics: Picturing the World (7th Edition)
log a =
Precalculus
Assessment 1-1A How many triangles are in the following figure?
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Q9. If A and B are two events, prove that P(ANB) ≥ 1 − P(Ā) – P(B). [Note: This is a simplified version of the Bonferroni inequality.]arrow_forwardQ6. Consider a situation where cars entering an intersection could turn right, turn left, or go straight. An experiment consists of observing two vehicles moving through the intersection. (a) How many sample points are there in the sample space? List them. (b) Assuming that all sample points are equally likely, what is the probability that at least one car turns left? (c) Again assuming equally likely sample points, what is the probability that at most one vehicle turns right?arrow_forward13. If X has the distribution function F(x) = 0 1 12 for x < -1 for -1x < 1 for 1x <3 2 3 for 3≤x≤5 4 1 for x≥5 find (a) P(X ≤3); (b) P(X = 3); (c) P(X < 3); (d) P(X≥1); (e) P(-0.4arrow_forwardPlease solve the following Statistics and Probability Problem (show all work) : The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?arrow_forwardPlease solve the following Probability and Statistics problem (show all work and double check solution is correct): Suppose that a die is rolled twice. What are the possible values that the following random variables can take1. the maximum value to appear in the two rolls;2. the value of the first roll minus the value of the second roll?3. Calculate the probabilities associated with the above two random variables?arrow_forwardPlease solve the following statistics and probability problem (show all work) : This problem is to show that determining if two events are independent is not always obvious.1. Consider a family of 3 children. Consider the following two events. A is the event that the familyhas children of both sexes and B is the event that there is at most one girl. Are events A and Bindependent?2. What is the answer in a family with 4 children?arrow_forwardPlease solve the following Probability and Statistics problems: (show all work) Suppose that a die is rolled twice. What are the possible values that the following random variables can take1. the maximum value to appear in the two rolls;2. the value of the first roll minus the value of the second roll?3. Calculate the probabilities associated with the above two random variables?arrow_forwardPlease solve the following Statistics and Probability Problem (show all work) : The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?arrow_forwardPlease solve the following Probability and Statistics problem (please double check solution and provide explanation): A binary communication channel carries data as one of two types of signals denoted by 0 and 1. Owing tonoise, a transmitted 0 is sometimes received as a 1 and a transmitted 1 is sometimes received as a 0. For agiven channel, assume a probability of 0.94 that a transmitted 0 is correctly received as a 0 and a probability0.91 that a transmitted 1 is received as a 1. Further assume a probability of 0.45 of transmitting a 0. If asignal is sent, determine 1. Probability that a 1 is received2. Probability that a 0 is received3. Probability that a 1 was transmitted given that a 1 was received4. Probability that a 0 was transmitted given that a 0 was received5. Probability of an errorarrow_forward3. A basket contains 2 orange, 3 white, 4 yellow, 5 pink, and 6 purple flowers. If a flowerarrow_forwardOne deck of cards is made of 4 suits (Spade, Diamond, Heart, Club) and 13 cards (A -> K), totaling 52 cards. A flush is a combination of 5 cards with the same suit. e.g. 3d 5d 9d Jd Kd A straight flush is a combination of 5 cards with the same suit, but also connected to each other. (e.g. highest straight flush is 10s Js Qs Ks As, the lowest straight flush is Ah, 2h, 3h, 4h, 5h) A straight flush is not considered a flush. Question 2 of 4 Draw random 5 cards (in one action) from the 52 cards deck, and calculate the probability of a flush. Provide the formula you used.arrow_forwardGame: dropping marbles from a 100-floor tower, given unlimited amount of identical marbles. if marble breaks when dropped from level X -> it breaks from all levels higher than X if marble doesn't break when dropped from level Y -> no marbles will break when dropped from level lower than Y Goal of Game: Find the highest level, from which the marbles doesn't break. Please design a testing plan to minimize the worst-case number-of-tests required to find the answer, with the constraint you can only break max 2 marbles. What is the minimum number of tests required? Explain your testing plan and how you arrived at this number.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
ALGEBRAIC EXPRESSIONS & EQUATIONS | GRADE 6; Author: SheenaDoria;https://www.youtube.com/watch?v=fUOdon3y1hU;License: Standard YouTube License, CC-BY
Algebraic Expression And Manipulation For O Level; Author: Maths Solution;https://www.youtube.com/watch?v=MhTyodgnzNM;License: Standard YouTube License, CC-BY
Algebra for Beginners | Basics of Algebra; Author: Geek's Lesson;https://www.youtube.com/watch?v=PVoTRu3p6ug;License: Standard YouTube License, CC-BY
Introduction to Algebra | Algebra for Beginners | Math | LetsTute; Author: Let'stute;https://www.youtube.com/watch?v=VqfeXMinM0U;License: Standard YouTube License, CC-BY