Concept explainers
The composition of pennies has changed over the years, depending on a number of factors, including the availability of various metals. A penny minted in 1825 was pure copper; a penny minted in 1860 was 88 percent copper and 12 percent nickel; a penny minted in 1965 was 95 percent copper and 5 percent zinc; and a penny minted today is 97.5 percent zinc and 2.5 percent copper. Given that the densities of copper, nickel, and zinc are 8.92 g/cm3, 8.91 g/cm3, and 7.14 g/cm3, respectively, determine the density of each penny.

Interpretation: From the given data, density of each penny should be determined.
Concept introduction:
Answer to Problem 1.116QP
Explanation of Solution
The density of penny minted in 1825
A penny minted in 1825 was pure copper. Therefore, the density of penny was that of copper. The density of copper was
The density of penny minted in 1860
A penny minted in 1860 was 88 percent copper and 12 percent nickel. The density of the penny can be calculated using the weight percentages of each element and the densities of element. Here in the case on 1860,
So, the density of penny can be calculated as follows;
The density of penny minted in 1965
A penny minted in 1965 was 95 percent copper and 5 percent zinc. The density of the penny can be calculated using the weight percentages of each element and the densities of element. Here in the case on 1965,
So, the density of penny can be calculated as follows;
The density of penny minted today
A penny minted today is 97.5 percent zinc and 2.5 percent copper. The density of the penny can be calculated using the weight percentages of each element and the densities of element. Here in the case,
So, the density of penny can be calculated as follows;
From the given data, density of each penny is determined.
Want to see more full solutions like this?
Chapter 1 Solutions
CHEMISTRY:ATOMS FIRST-2 YEAR CONNECT
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





