Electric Machinery and Power System Fundamentals
1st Edition
ISBN: 9780072291353
Author: Stephen J. Chapman, Stepehn J. Chapman
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.10Q
Why are all cores exposed to ac flux variations laminated?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
b)
Another waveform g(t) is defined by
=0
t≥0, α>0
otherwise
g(t)= At exp(-at)
and is plotted in Figure 1 (for representative values of 4 = 1 and α = 1).
g(t)
0.4T
0.3+
0.2
0.1+
2
0
2
Figure 1
8
c)
Show that its amplitude spectrum is |G(@)| = -
A
(a²+0²)²
Describe briefly, with the aid of labelled sketches, how changing a affects
the waveform in both the time and frequency domains.
d) Deduce the Fourier transform H(@) of h(t) = g(t)+g(t+b)+g(t-b) and
calculate its DC amplitude H(0).
"I need an expert solution because
the previous solution is incorrect."
An antenna with a radiation impedance of 75+j10 ohm, with 10 ohm loss resistance, is
connected to a generator with open-circuit voltage of 12 v and an internal impedance of 20 ohms via
a 2/4-long transmission line with characteristic impedance of 75 ohms.
(a) Draw the equivalent circuit
(b) Determine the power supplied by the generator.
(c) Determine the power radiated by the antenna.
(d) Determine the reflection coefficient at the antenna terminals.
--3/5-
b) g(t) =
3
1441
g(t+mT) = g(t)
-31
(i) Complex fourier coefficient Cn.
(ii) Complex fourier coefficients - real fourier coefficient (the first 5 non-zero terms)
of
(iii) sketch the amplitude spectrum g(t)
|Cal against n. n= -3 ⇒n=3 (labelling the axis).
Chapter 1 Solutions
Electric Machinery and Power System Fundamentals
Ch. 1 - What is torque? What role does torque play in the...Ch. 1 - What is Amperes law?Ch. 1 - What is magnetizing intensity? What is magnetic...Ch. 1 - How does the magnetic circuit concept aid in the...Ch. 1 - What is reluctance?Ch. 1 - What is a ferromagnetic material? Why is the...Ch. 1 - How does the relative permeability of a...Ch. 1 - Prob. 1.8QCh. 1 - What are eddy current losses? What can be done to...Ch. 1 - Why are all cores exposed to ac flux variations...
Ch. 1 - What is Faraday law?Ch. 1 - What conditions are necessary for a magnetic field...Ch. 1 - What conditions are necessary for a magnetic field...Ch. 1 - Prob. 1.14QCh. 1 - The linear machine in Figure 1-19 is running at...Ch. 1 - Just how does a decrease in flux produce an...Ch. 1 - Will current be leading or lagging voltage in an...Ch. 1 - What are real, reactive, and apparent power? What...Ch. 1 - What is power factor?Ch. 1 - Prob. 1.1PCh. 1 - A flywheel with a moment of inertia of 4kgm2 is...Ch. 1 - A force of 10 N is applied to a cylinder of radius...Ch. 1 - A motor is supplying 50Nm of torque to its load....Ch. 1 - A ferromagnetic core is shown in Figure P1-2. The...Ch. 1 - A ferromagnetic core with a relative permeability...Ch. 1 - A two-legged core is shown in Figure P1-4. The...Ch. 1 - A core with three legs is shown in Figure P1-5....Ch. 1 - A two-legged core is shown in Figure P1-4. The...Ch. 1 - A wire is shown in Figure P1-7 that is moving in...Ch. 1 - Repeat Problem 1-10 for the wire in Figure P1-8.Ch. 1 - Prob. 1.12PCh. 1 - A core with three legs is shown in Figure P1-10....Ch. 1 - A two-legged magnetic core with an air gap is...Ch. 1 - A transformer core with an effective mean path...Ch. 1 - The core shown in Figure P1-2 has the flux shown...Ch. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Demonstrate that Equation (1-59) can be derived...Ch. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - For the linear machine of Problem 1-22: When this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4) (i) Calculate the fourier transform of : h(t) 2T (is) h(t) 2T -T о T 2T ·(-++T). cos2t ost≤T (iii) hro (4) ((-++T). cos otherwisearrow_forwardQ2)a) consider the Circuit in figure 2 with initial conditions of Vc (o) = 5V, I₁ (o) = 1A, (i) redraw the circuit in the frequency domain using laplace Wansforms. (ii) using this circuit derive an equation for the Voltage across the inductor in the time domain.. 3.12 ww =V/3F ZH (figure 2) d) Solve the following second order differential equation using laplace transforms. d12 + 5 dx 3x=71 dt - with initial conditions x² (0) = 2, α(0) = 1arrow_forwardb) Another periodic waveform is defined by T c) g(t)= T with g(t+mT) = g(t) and m is an integer. (i) Sketch g(t) over two full cycles in the time domain, labelling the axes. (ii) Derive the formulae for the complex Fourier coefficients c₁ for g(t). For a periodic waveform h(t), if its complex Fourier coefficients are T T when n is odd T 2n²² T 4nn when n is even and not zero 4nn please derive the first five non-zero terms of the real Fourier series for h(t).arrow_forward
- Q3)α) f(t) = (-+- 1 Isto f(t+mT) = f(t). L+- I Ost ST integer (i) sketch f(t) 2 full cycles time domain. (labelling the axis). (ii) Derive the formula for the real fourier Coefficients (i) Real Fourier series f(t), first 5 non-terms. an bn for f(t).arrow_forwardQ3. a) A periodic waveform is defined by T 3 0≤t< f(t) = SIarrow_forwardQ2. a) Sketch the following waveform f(t)=Vo -1/2≤t≤1/2 =0 otherwise and show that its Fourier transform is 2V ωτ ωτ F(s)-sinotsinc) 2 Use this result to sketch a fully labelled graph of the amplitude spectrum of a single square voltage pulse, of amplitude 24V and pulse width 1.4μs, using units of Hz for the frequency axis. (Note: graph paper is not required - a clear, fully-labelled sketch is adequate).arrow_forwardc) Another periodic waveform is defined by 4t g(t)= 0≤tarrow_forwardQ1. a) A periodic waveform is defined by f(t)= 3 0≤tarrow_forwardI have 50mV in the function generator with 10kHz. Does the connection and reading seem about right? I need to read output voltage.arrow_forwardThe solution sent previously is incorrect; I need the correct solution. An antenna with a radiation impedance of 75+j10 ohm, with 10 ohm loss resistance, is connected to a generator with open-circuit voltage of 12 v and an internal impedance of 20 ohms via a 2/4-long transmission line with characteristic impedance of 75 ohms. (a) Draw the equivalent circuit (c) Determine the power radiated by the antenna.arrow_forwardFIU Quiz: Take Quiz 1: Chapter 1 courses/217034/quizzes/1318866/take S M Inbox (40,079) - josesanchez11: X + 2. For the circuit in figure below: (a) Identify and label all distinct nodes. (b) Which of those nodes are extraordinary nodes? (c) Identify all combinations of 2 or more circuit elements that are connected in series. (d) Identify pairs of circuit elements that are connected in parallel. ww 25 Ω 12 V +1 40 Ω 10 Ω 60 Ω ww 2502 Ω 30 Ω 20 Ω 15 Ω ww Upload Choose a File X legearrow_forwardSolve the octic polynomial 2s⁸+s⁷+2s⁶-31s⁴-16s³-32s²-160=0 Only expert should attempt this question,no artificial intelligencearrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill EducationFundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,8.02x - Lect 21 - Magnetic Materials, Dia- Para- & Ferromagnetism; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=1xFRtdN5IJA;License: Standard Youtube License