Concept explainers
Practice Exercise 0.13
Naturally occurring boron is composed of 19.9% of
Want to see the full answer?
Check out a sample textbook solutionChapter 0 Solutions
Chemistry: The Molecular Nature of Matter
Additional Science Textbook Solutions
Principles of Anatomy and Physiology
Human Biology: Concepts and Current Issues (8th Edition)
Cosmic Perspective Fundamentals
Anatomy & Physiology (6th Edition)
Microbiology: An Introduction
Introductory Chemistry (6th Edition)
- Reference Section 5-2 to find the atomic masses of 12C and 13C, the relative abundance of 12C and 13C in natural carbon, and the average mass (in u) of a carbon atom. If you had a sample of natural carbon containing exactly 10,000 atoms, determine the number of 12C and 13C atoms present. What would be the average mass (in u) and the total mass (in u) of the carbon atoms in this 10,000-atom sample? If you had a sample of natural carbon containing 6.0221 1023 atoms, determine the number of 12C and 13C atoms present What would be the average mass (in u) and the total mass (in u) of this 6.0221 1023 atom sample? Given that 1 g = 6.0221 1023 u, what is the total mass of I mole of natural carbon in units of grams?arrow_forwardThere are 1.699 1022 atoms in 1.000 g of chlorine. Assume that chlorine atoms are spheres of radius 0.99 and that they are lined up side by side in a 0.5-g sample. How many miles in length is the line of chlorine atoms in the sample?arrow_forwardArgon has three naturally occurring isotopes: 0.3336% 36Ar, 0.063% 38Ar, and 99.60% 40Ar. Estimate the average atomic mass of argon. If the masses of the isotopes are 35.968 u, 37.963 u, and 39.962 u, respectively, calculate the average atomic mass of natural argon.arrow_forward
- The element silver (Ag) has two naturally occurring isotopes: 109 Ag and 107Ag with a mass of 106.905 u. Silver consists of 51.82% 107Ag and has an average atomic mass of 107.868 u. Calculate the mass of 109Ag.arrow_forwardA cube of sodium has length 1.25 in. How many atoms are in that cube? (Note: dNa=0.968g/cm3.)arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible. 21. Repeat Exercise 2.20 using an element that has three naturally occurring isotopes.arrow_forward
- The average atomic masses of some elements may vary, depending upon the sources of their ores. Naturally occurring boron consists of two isotopes with accurately known masses ( 10B, 10.0129 amu and 11B, 11.0931 amu). The actual atomic mass of boron can vary from 10.807 to 10.8 19, depending on whether the mineral source is from Turkey or the United States. Calculate the percent abundances leading to the two values of the average atomic masses of boron from these two countries.arrow_forwardA mass spectrometer determines isotopic masses to eight or nine significant digits. What limits the atomic mass of carbon to only five significant digits?arrow_forwardEarly tables of atomic weights (masses) were generated by measuring the mass of a substance that reacts with 1.00 g of oxygen. Given the following data and taking the atomic mass of hydrogen as 1.00, generate a table of relative atomic masses for oxygen, sodium, and magnesium. Element Mass That Combines with 1.00Oxygen Assumed Formula Hydrogen 0.126g HO Sodium 2.875g Nao Magnesium 1.500g Mgoarrow_forward
- Early tables of atomic weights (masses) were generated by measuring the mass of a substance that reacts with 1.00 g of oxygen. Given the following data and taking the atomic mass of hydrogen as 1.00, generate a table of relative atomic masses for oxygen, sodium, and magnesium. Element Mass That Combines with 1.00g Oxygen Assumed Formula Hydrogen 0.126 g HO Sodium 2.875 g NaO Magnesium 1.500 g MgO How do your values compare with those in the periodic table? How do you account for any differences?arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible.arrow_forwardAverage atomic masses listed by JUPAC are based on a study of experimental results. Bromine has two isotopes 79Br and 81Br, whose masses (78.9 183 and 80.9 163 amu) and abundances (50.69% and 49.3 1%) were determined in earlier experiments. Calculate the average atomic mass of bromine based on these experiments.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning