You will answer this question by dragging and dropping elements from the list below into boxes. The elements below are colour-coded: you can only drop an element into a box with a matching colour. Please note that you may need to leave some of the boxes blank. Do not include any items that are equal to zero. The following wavefunction is a solution for the time-independent Schrödinger equation for a particle inside a one-dimensional finite potential energy barrier: y=A exp (-ax). (a) The particle has total energy E
You will answer this question by dragging and dropping elements from the list below into boxes. The elements below are colour-coded: you can only drop an element into a box with a matching colour. Please note that you may need to leave some of the boxes blank. Do not include any items that are equal to zero. The following wavefunction is a solution for the time-independent Schrödinger equation for a particle inside a one-dimensional finite potential energy barrier: y=A exp (-ax). (a) The particle has total energy E
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question

Transcribed Image Text:You will answer this question by dragging and dropping elements from the list below into
boxes. The elements below are colour-coded: you can only drop an element into a box
with a matching colour. Please note that you may need to leave some of the boxes blank.
Do not include any items that are equal to zero.
The following wavefunction is a solution for the time-independent Schrödinger equation for
a particle inside a one-dimensional finite potential energy barrier:
y=A exp (-ax).
(a) The particle has total energy E<W, with W its potential energy inside the barrier.
Taking this into account, complete the Schrödinger equation below for the system under
consideration:
d²w 2m
dx-2
+
たこ
W = 0.
(b) In order to show that the wavefunction is indeed a solution of the Schrödinger
equation above, differentiate it twice with respect to the coordinate x and complete the
equation below:
dx
(c) Finally, introduce the above result into the Schrödinger equation and determine the
expression for a that is consistent with y being one of its solutions. Write this expression
using the boxes below:
+
α
E
W
x
sin
COS
sin2 cos² exp
Y
2m
h
h2
A
A²
α
d
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON